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Abstract 
Running jobs on the IBM SP2, as in most distributed memory parallel system in the 
market today, is done by giving each job a subset of the available processors for its 
exclusive use. Scheduling jobs in FCFS order suffers from severe fragmentation that 
leads to utilization loss. This led Argonne National Lab, where the first large SP1 was 
installed, to develop the EASY scheduler, which has since then been adopted by many 
other SP2 sites. This scheduler uses aggressive backfilling: Small jobs may be moved 
way ahead in the queue, while large jobs may suffer an unbounded delay. A more 
conservative backfilling strategy, which retains the predictability feature of FCFS, 
seems to equalize EASY’s performance on average workloads. None of the above 
schedulers support prioritization – allowing the administrators or the users themselves 
to schedule a job with a high or low priority, subject to accounting considerations 
such as paying for priority, preferred groups, quotas, emergencies and so on. 

This paper presents a scheduler that supports both user and administrative priorities. 
The scheduler gives each waiting job a slack, which determines how long it may have 
to wait before running: ‘Important’ and ‘heavy’ jobs will have little slack in 
comparison with others. When a new job is submitted, all possible schedules are 
priced according to utilization and priority considerations and as long as no job is 
delayed beyond its slack, the cheapest schedule is chosen. This gives the scheduler the 
flexibility to effectively backfill, and preserves the bounded delay advantage of FCFS 
and conservative backfilling over EASY. Experimental results show that the priority 
scheduler reduces the average wait time by about 15% relative to EASY in an equal 
priorities scenario, and is responsive to differential priorities as well. 
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1. Introduction 

1.1. The Problem: Utilization 
Most currently available distributed memory supercomputers require users to submit 

the number of processors required for a job they wish to run. When the requested 

number of processors becomes available, the job is executed, and the processors are 

dedicated to it until it terminates or is killed. This scheme is called variable 

partitioning [2]. Usually the partitions of processors are allocated on a FCFS basis, 

where interactive jobs are submitted directly and batch jobs are submitted via a 

queuing system such as NQS. This approach results in severe fragmentation, because 

processors which cannot fulfill the demands of the next job in the queue must remain 

idle until more processors are freed. FCFS based schedulers show a typical system 

utilization of 50-80% [4,7,9,12]. 

Two solutions have been proposed to this problem, but both suffer from practical 

limitations. This first is dynamic partitioning [11], in which jobs may gain or lose 

some of their processors dynamically during their lifetime. Jobs may also be halted in 

favor of other jobs, and renewed later, possibly on a different set of processors. This 

approach proves to be an improvement over variable partitioning, but it requires 

complex operating system software adjustments and the development of some means 

of programmer intervention, in cases where the number of processors a job has 

changes. Dynamic partitioning has never been implemented in a production system. 

The second solution to the efficiency shortcoming of variable partitioning is gang 

scheduling [3], but the only efficient and widely used implementation of it so far was 

on the CM-5 connection machine. Other implementations are too coarse grained for 

real interactive support, and do not enjoy much use. 

A far simpler approach is to use a non-FCFS policy for queuing the waiting jobs on a 

variable partitioning system [5]. This requires minimal change of current production 

systems, but may still lead to considerable utilization improvements. For example, 

consider the scenario in which several small jobs are running, and a job that requires 

the entire system is the first in the queue. A FCFS scheduler will reserve freed 

processors until the entire system is available, keeping processors idle until the last 

running job has terminated [8,1]. A non-FCFS scheduler could execute small jobs 

from the back of the queue until the last job finishes, therefore improving the total 
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utilization of the system. Such an approach is called backfilling: Idle partitions of 

processors can be filled by small jobs from the back of the queue. Clearly, the system 

should be cautiously designed not to starve large jobs. 

The first large installation of the IBM SP1 was in Argonne National Lab, initially 

using FCFS scheduling. The lab developed a new scheduler that was based on an 

aggressive backfilling strategy and was part of EASY (Extensible Argonne 

Scheduling sYstem) [10]. The system has since then been integrated into IBM’s 

LoadLeveler for the SP2 [13]. The EASY scheduler requires users to submit an 

estimation of the job’s runtime along with it. Users are encouraged to submit accurate 

estimations: A low estimation may lead to killing the job before it terminates, and a 

high estimation may lead to a long wait time and possibly to excessive CPU quota 

loss. Using the users’ estimations, the EASY scheduler backfills a jobs (moves it 

ahead in the queue) if it doesn’t delay the first job in the queue. 

A recent project [14] has shown two drawbacks of EASY, which are in essence two 

faces of the same problems. First, jobs may suffer an unbounded delay, and second, 

the scheduler is unpredictable and cannot commit to users about when their jobs will 

run. It was shown that a more conservative backfilling strategy, in which a job is used 

for backfilling only if it doesn’t delay any other job in the queue, produces the same 

performance as EASY on average workloads, while guaranteeing the user the job’s 

latest possible start time upon its submission. The conservative backfilling eliminates 

the above two problems of EASY while maintaining the same level of performance. 

1.2. The Problem: Priorities 
Supercomputers are typically used by several groups and projects at once – academic, 

business oriented, military and so on. The administrators may wish to give each of 

them a different priority, or enforce a CPU quota on groups, projects or users. 

Different users within a system may also wish to prioritize themselves: Although a 

small academic project has a lower priority than an major military one, the college 

project may have a nearby deadline and wish to temporarily increase its priority, even 

at some cost. Administrators can ‘charge’ users for using a higher priority by 

requiring more CPU quota for such a job, or by other more explicit mechanisms. 

This functionality does not exist in the current schedulers available for the SP2 or 

similar systems [10]. In fact, SP2 doesn’t even monitor the users’ CPU quota use 
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online, and it is checked periodically. The new scheduler to be presented will support 

both user and the so-called political priorities [18], which give a preference to selected 

groups or projects. Moreover, the priority mechanism will also be used to improve the 

chance that jobs will not wait substantially longer than the average wait time. If a job 

initially has to wait more than the system’s average wait time its priority will increase, 

and if it has been initially ‘lucky’, its priority will decrease. This will give unlucky 

jobs an advantage in future backfilling operations, if there are any. 

When users or projects exceed their quota for any system resource, the usual counter-

action is to entirely block their access to the system. A softer policy would be to allow 

them to run jobs as long as they are not interrupting any other legitimate job. This 

policy seems preferable, and we implemented it by allowing the assignment of an 

‘absolute zero’ priority to such jobs. 

It is desirable that inserting priorities into the system will not deteriorate its 

performance, but this may be an impossible goal. Consider, for example, a scenario in 

which a high priority job that needs few processors is the first in the queue and a low 

priority jobs that needs all processors is the second. We would wish to run the second 

job first, since it may increase utilization (smaller jobs that come later could run side 

by side with the first job). However, this would be in contrast with the priority 

requirement. The scheduler should obviously have some method of weighing the 

importance of each requirement in such a case in order to make the best decision. 

The priority scheduler presented here resolves the above situation by a pricing 

mechanism, which prices each possible schedule and then chooses the ‘cheapest’ one 

according to weighed costs of utilization, time, priorities and fairness. The scheduler 

performs better than EASY or conservative backfilling in an equal priorities scenario, 

and even when differential priorities are used, the low priority jobs wait less than in 

EASY. The weighed importance given to different considerations (for example, 

utilization versus priorities) can be set by the administrators. The resulting 

mathematical model seems simpler than other popular priority schedulers [17,16,15]. 

The following sections include a description of EASY, conservative backfilling, and 

finally the priority scheduler. Afterwards, performance results from simulations based 

on real production workloads are presented and discussed. 
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2. Requirements 

2.1. Formalities 
A job that a user submits will be denoted as j = <n, t, up, pp, t0>. n is the required 

number of processors, t is the amount of runtime the user estimates the job requires, 

up and pp are the job’s user and political priority (which will be further discussed in 

section 2.3), and t0 is the arrival time of the job to the queue. A full representation of a 

job in the system will be j = <n, t, p, t0, te, s, s0>. te is the time in which the job is 

scheduled to start executing (it may change several times before the job actually runs), 

p is the weighed priority of the job, s is the job’s current slack, and s0 is the job’s 

initial slack. Slack will be measured in units of time. The EASY and conservative 

schedulers obviously ignore priorities and slack, and simply require a job’s n, t and t0. 

A schedule will be represented by a profile of running and waiting jobs. For each 

point in time, the profile should include information about which jobs are assigned to 

which processors at that time. Usually we’ll refer to time slots (intervals) and not 

individual points. Note that a profile can be implemented as an associative array of 

time slots and a list of scheduled jobs for each slot; its size is linear in the total 

number of running and waiting jobs. 

Special points in time are ST – start time, or the earliest time slot; CT – current time; 

and ET – end time, or the last time slot. The constants PROCS (number of processors) 

and AWT (average wait time) of the system are assumed to be given. The idleness of 

time slot ts is defined as the unused CPU time in it, which is the product of its 

duration and the number of its free processors. 

Graphically, jobs will be represented as a rectangle in a processors/time space, and 

profiles will be represented as a grid of jobs over such a space. 
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A scheduler is basically an event driven program that supports these actions: 

Insert(j) – A user requests to execute a new job. 

Remove(j) – A user cancels a request, or a running job finishes running before its  

                      expected runtime j.t. 

Tick() – Every time the current time reaches the beginning of a time slot ts, new  

                      jobs should be executed and jobs that should have ended may be killed. 

2.2. Basic Requirements 
The following describes the environment in which the scheduler works: 

I. Users submit jobs (as described above) dynamically. The scheduler 

should insure the highest possible CPU utilization, subject to priority 

and fairness.  

II. One job may be assigned to a processor at any time. 

III. A job must be given all the n processors it requests at once. 

IV. No preemption: A running job can’t be stopped, and it’s impossible to 

change the processors assigned to it. 

V. Jobs are independent of one another, and don’t create other jobs. 

VI. There exists an accounting system that encourages users to give 

accurate time estimates for their jobs. 

The following are the basic requirements from the scheduler: 

VII. There is no starvation. 

VIII. If a job runs more than the time it asked for j.t, it may be killed if 

continuing to run it would delay other jobs. This, however, causes a 

utilization penalty. 

IX. When a job is submitted the user is given an upper bound on its start time. 

2.3. Priority Requirements 
There are three stakeholders in determining the priority of a new job: 

UP – User priority. The user can give the job a priority in the range [0,1]. 

PP – Political or Administrator priority. Every user, group and project have such a   

 priority in the range [0,1] which represents its relative ‘importance’. If the user 

 exceeds his/her quota for any resource, assign PP = -�. 
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SP – Scheduler priority. The scheduler may raise or lower a job’s priority if its initial  

          start time causes it to wait considerably above or below average. 

The user and political priorities are given when insert(j) is called. The scheduler 

priority is also in the range [0,1], and will be discussed later. We assume that the 

priorities and quotas system is backed up by an accounting system that encourages 

users not to request a higher priority than they need. 

The requirements from the scheduler that stem from priorities/quotas are: 

X. Guarantee bounded delay: Although a job j may be rescheduled 

(pushed down the queue) many times, it is illegal to delay j by more 

than j.s seconds during its entire lifetime. 

XI. Maximize utilization: A schedule in which the total idleness (over all 

time slots) is smaller is preferable. 

XII. Prefer jobs that arrived earlier. Specifically, If two waiting jobs j1 and 

j2 are identical but j1.t0 < j2.t0, then j1 should run earlier. 

XIII. Prefer jobs with higher priority. Specifically, If two waiting jobs are 

identical except j1.p > j2.p, then j1 should run before j2. 

XIV. Fair share of delays: If one of two identical jobs j1,j2 must be 

rescheduled (their te increased because, for example, a higher priority 

job has arrived), and j1.s > j2.s, then j1 should be delayed. 

XV. Requirements XI, …, XIV may conflict, therefore they can be given 

global weights 0 � �u , �t , �p , �f � 1 which correspond to the weighed 

importance of the utilization, time, priority and fairness requirements. 

Requirement X is a private case of requirement IX for slack based schedulers, and it 

specifies the role of slack as a guard against starvation. This requirement was added 

explicitly in order to stress its affect on the other priority requirements. 

A priority scheduler has to support four conflicting goals, as requirement XV 

summarizes. Moreover, it is required that it would be possible to give different 

weights to each of these goals in order to give the administrators a stake in 

determining which services are more important to them. 
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3. The EASY and Conservative Schedulers 

3.1. EASY Backfilling 
The EASY approach to backfilling is an aggressive strategy: Jobs are allowed to skip 

ahead in the queue provided that they do not delay the first job in the queue [10,13]. 

Influence on other jobs is not checked, and the result is that although there is no 

starvation, the wait time of a job is unbounded, and therefore the algorithm cannot 

commit as to when a job will run. The EASY scheduler supports requirements I 

through VIII (most of which simply introduce the scheduler’s environment). 

When a new job is submitted, its requirements are checked against the currently 

running jobs and the first job in the queue. The time in which the first job in the queue 

is going to run is called the shadow time; the idle nodes after the first queued job 

starts running are called extra nodes. The new job is backfilled (passes the first job in 

the queue and starts running immediately) if one of the following two conditions hold: 

1. It requires no more than the currently free nodes, and will terminate by the shadow 

time. 

2. It requires no more than the minimum of the currently free nodes and the extra nodes. 
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The EASY scheduler only checks that the backfilled job does not delay the first job in 

the queue, hence other jobs may be delayed. This leads to the fact that the waiting 

time of a job in an EASY queue is unbounded. Consider the following profile, in 

which J1 and J2 are running and the queue is J3, J4 and J5 in this order: 
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3.2. Conservative Backfilling 
The conservative backfilling algorithm takes a different approach to backfilling. 

It complies with requirements I through IX. This algorithm is usually the vanilla 

version assumed in the literature [3,6], although it seems not to be used. 

The algorithm maintains a profile similar to that of EASY. When a new job arrives, 

the profile is scanned to find the first future time slot in which there are enough free 

processors to run the new job. The scanning then continues to see if the processors 

will be available until the new job terminates. If so, the job is assigned to this time 

slot. In the worst case, the job will be assigned to the last time slot (ET, in which all 

processors are free), and therefore the running time of this algorithm is linear in the 

size of the profile. The difference from EASY is that a job is backfilled only if doesn’t 

delay any job in the queue, instead of looking only at the first job. 

The insert(j) operation determines the start time of j, and this time can only be 

improved later, if jobs that were ahead of j in the queue are removed. The start time 

initially assigned to j is therefore an upper bound on its actual start time. 
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3.3. Comparison 
Conservative backfilling was tested against EASY using both a workload model and 

production workloads, using bounded slowdown as the performance metric [14]. The 

results show consistently that the two algorithms are practically identical in low and 

average workloads. Conservative Backfilling showed a slightly better performance in 

very high workloads, which are not practical. The conclusion is that the aggressive 

backfilling strategy used by EASY is not preferable, and that the execution guarantees 

made by the conservative scheduler make it preferable. 

Further tests examined how the performance of the conservative scheduler is affected 

by the fact that users’ estimates of runtimes are generally very poor. The results 

indicated that a certain degree of inaccuracy improved the algorithm: Overestimation 

of runtimes seems to give the scheduler more flexibility to backfill. This led to the 

idea that an improvement of conservative backfilling should explicitly incorporate this 

inaccuracy into the scheduler, by using the notion of slack. This was the basis for the 

priority scheduler. 

 

4. The Priority Scheduler 

4.1. Outline 
Apart from supporting priorities, the priority scheduler is an extension of conservative 

backfilling. It differs from it by its backfilling strategy, and, of course, by supporting 

priorities and adhering to all I through XV requirements. The scheduler assigns each 

waiting job some slack, which measures the maximal amount of time that the job may 

be delayed beyond its initially assigned start time. While EASY allows backfilling a 

job if it doesn’t delay the first job in the queue, and conservative backfilling allows 

backfilling a job if it doesn’t delay any job in the queue, the priority scheduler allows 

backfilling a job if it doesn’t delay any job in the queue by more than that job’s slack. 

When a job is delayed or sped up its slack changes accordingly. This way the 

scheduler enjoys more flexibility than conservative scheduling, but still retains the 

execution guarantee requirement IX, because the initial start time of a job plus its 

initial slack is an upper bound on its actual start time. 

The priority backfilling algorithm maintains a profile similar to that of conservative 

backfilling. When a new job is inserted, any other jobs may be rescheduled in order to 
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optimize the overall utilization, subject to constraints of no preemption, execution 

guarantees and priorities. The algorithm gives a price to every possible new schedule, 

and chooses the cheapest one. The price of a schedule is the sum of prices of jobs, and 

the price of each job is the product of its delay by the number of processors it uses. 
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Another possible case may be a high priority of J2, but a low priority of J1 (relative to 

that of J3). In this case, it may be best to schedule J3 at t=0 and J1 at t=2. 

A fourth and final consideration are the priority weights as defined in requirement 

XV. The algorithm can be tuned so that some of the previous considerations will be 

more important than others are. For example, we may decide that utilization is much 

more important than priorities (assign �u close to 1 and �p close to 0), and in this case 

we may decide to delay J2 in favor of J3 although J2 has a higher priority. 

4.2. The Algorithm 
insert(j): Loop over all possible schedules (conceptually) and give a price to every 

possible schedule. The price of scheduling j at j.te and delaying j1, …, jk by t1, …, tk 

seconds is infinity if it causes one of the ji to achieve a negative slack (if ji.s – ti < 0), 

and otherwise it is: 

�
�

����
k

i

iie jtjtnjCTtjprice
1

ut ),,(cos�.�).(  

The cost function determines the cost of moving ji by ti seconds in favor of j, and will 

be discussed later. Cost will be negative if a ti is negative (i.e. if the job is being 

moved up rather than being delayed). Note that there is always at least one schedule 

of finite price: Do what conservative backfilling would have done. Once we know 

what the cheapest schedule is, we adjust the slacks of the rescheduled jobs (for all 

i=1..k, ji.s = ji.s – ti), and start running jobs that should start now. 

Remove(j): Remove j from the profile, and then loop over all possible schedules, and 

find the cheapest one, exactly as in insert. Here we expect a negative price – a profit. 

Tick(): We can choose to kill jobs that were supposed to terminate but didn’t, as done 

in EASY and conservative backfilling. A better possibility is described in section 4.7. 

The following two sections describe how the priority and slack of a new job are 

determined, and the cost(ji, ti, j) function that prices reschedules of jobs. Section 4.5 

addresses the complexity problem: Since there is an exponential number of possible 

schedules of k jobs (which is k!), it is not practical to check each of them in a naive 

manner. The last section summarizes the algorithm and its parameters. 



14 

 

4.3. Calculating Priority and Slack 
The priority j.p of a job is composed of its user, political and scheduler priorities. The 

user and political priorities are given when the job is submitted, but the scheduler 

priority is not. The scheduler priority is a number in the range [0,1], and we wish it to 

be higher when the job’s initial wait time is longer. This way the scheduler can ensure 

that if a job was initially scheduled very early compared to the average wait time, its 

priority can be lowered and its slack increased in favor of less fortunate jobs, so that 

more fairness could be achieved later. 

At first, we assign SP = ½ for all jobs. This means that we want all jobs to wait 

exactly the average wait time. Then, we calculate the job’s priority: 

Afterwards, we calculate the job’s initial slack: 
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The constant SF is the slack factor of the system – it’s another parameter of the 

algorithm. In section 4.1 we saw that giving jobs slack can improve utilization; 

however, giving jobs too much slack makes the upper bound on delays meaningless. 

The slack factor gives a way to express an opinion about this tradeoff. 

The case in which j.p = -� occurs when the user exceeds his or her quota for one of 

the system’s resources.  The administrator then submits j with j.PP = -� which causes 

the job to have infinite slack. This means that this job can suffer an unbounded delay, 

and will only run when it’s not disturbing any other job. 

Once we have a priority and an initial slack for j, We can compute the price of each 

possible schedule. After deciding where it’s best to execute the new job, its start time 

j.te will be defined. Then, we recalculate: 
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Note that j.SP is zero if j doesn’t wait at all, ½ if it waits the average wait time, and 1 

if it waits twice the AWT or more. 
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It may be wise to use several AWT’s for several sizes of jobs: For example, the 

average wait time in a system may be two hours, but it is unreasonable that a ten 

seconds long job would have to wait that much. This option was not tested, and the 

overall average system wait time was used in all simulations. 

Once we have the new j.SP, we recalculate j.p and j.s0 according to this new j.SP 

value, and use the new priority and slack values from now on. This recalculation takes 

place only once – we do not reschedule j after recalculating its priority and initial 

slack. These new values will only have an effect in case of future backfilling attempts. 

4.4. Calculating Cost 
The cost of moving ji by ti seconds in favor of j depends on the utilization gain or loss 

that the move causes (requirement XI), the relative priorities of the two jobs (XIII), 

and the percentage of ji’s slack that was already used (XIV). The preference of earlier 

jobs (XII) is contained in the fact that when two schedules are equally priced, we’ll 

choose the schedule with the least number of moved jobs. Since delaying the new jobs 

doesn’t ‘count’ as a delay, older jobs have an advantage over the new one. By 

requirement XV all the above considerations are weighed by �u , �t , �p , �f. 

To conclude we get: 
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As an example that demonstrates how cost() behaves, consider the profile discussed in 

section 4.1 (also at the top of the next page). J1 and J2 have been scheduled, and J3 

arrives. There are three schedules to consider: S1 in which J3 is scheduled at t=2, S2 

in which J2 moves to t=2 and J3 is scheduled at t=0, and S3 in which J1 moves to t=2 

and J3 is scheduled at t=0. The following tables calculate the price of each schedule 

under different priorities. A slack reading ‘x of y’ means that the job’s current slack is 

x, and its initial slack was y. 
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These results assume �u = �t = �p = �f = 1: 

J1 J2 J4 Price(S1) Price(S2) Price(S3) Best 
s=10 of 10 

p=0.5 
s=10 of 10 

p=0.75 
s=10 of 10 

p=0.5 
4 3 4 S2 

s=10 of 10 
p=0.15 

s=10 of 10 
p=0.9 

s=10 of 10 
p=0.3 

4 6 2 S3 

s=5 of 10 
p=0.15 

s=10 of 10 
p=0.9 

s=10 of 10 
p=0.3 

4 6 4 S1 

s=2 of 10 
p=0.15 

s=3 of 10 
p=0.9 

s=10 of 10 
p=0.3 

4 � � S1 

This is how the first scenario changes if �u = ½: 

s=10 of 10 
p=0.5 

s=10 of 10 
p=0.75 

s=10 of 10 
p=0.5 

2.828 3 2.828 S1 

This is how the second scenario change if �p = ½: 

s=10 of 10 
p=0.15 

s=10 of 10 
p=0.9 

s=10 of 10 
p=0.3 

4 2.88 3.17 S1 

 

The first scenario demonstrates that if all priorities are equal or even if J2’s priority is 

slightly higher, the utilization gain in delaying J2 by two seconds rules to delay it in 

favor or J3. The second scenario demonstrates what happens if J2’s priority is very 

high and J1’s priority is very low: J1 will be delayed in favor of J3, instead of J2. The 

third scenario demonstrates fairness: It is the same as the second except the fact J1 has 

already been delayed (its current slack is only half of its initial slack). Fairness leads 

to leaving J1 where it is, and scheduling J3 at a later time. The fourth scenario is just a 

reminder to the execution guarantees given by the priority scheduler: Schedules which 

delay jobs by more than their slack can never be chosen. 

The fifth and sixth scenarios demonstrate the influence of the importance factors on 

scheduling decisions: Both demonstrate how the scheduler’s decision is changed due 

to the different weight it gives to each requirement. 

6 

PROCS=4 

2 

4 2 0 

 

J1 

J2 
 

J3 
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4.5. The Complexity Problem 
Basically, the problem at hand is a scheduling problem of jobs of variable duration 

with no preemption, variable deadlines, a resource constraint on processors, and 

variable costs for delaying a job. Not surprisingly, this is a NP-hard problem. 

The following exponential algorithm finds the optimal schedule for inserting a job j 

into a profile: For each time slot ts from CT to ET, do the following: Delay all jobs 

from ts to the profile’s end by j.t, and insert j as the only job scheduled for time ts. 

Then, compress the schedule in every possible way, and remember the cheapest 

schedule. 

If k jobs were delayed, there may be k! schedules to check, because every permutation 

of the delayed jobs defines an order in which the delayed jobs can be compressed, and 

each such permutation can create a different schedule with a different price. However, 

in many cases only few of these permutations will be worth checking. The example 

below will demonstrate these points. 

After looping over all time slots, the algorithm chooses the cheapest schedule of all. 

Note that when trying to assign the new job to a time slot we don’t have to try to 

change jobs that are scheduled for earlier slots, since we assume that the schedule was 

optimal before the new job was submitted. 

Note that remove(j) takes exactly the same time insert(j) takes, since remove(j) simply 

deletes j from the profile and then inserts a dummy job of zero time and processors. 

 

 

 

 

 

 

Consider this schedule to which j4 should be inserted. The above algorithm will 

iterate four times. Note that no real compression is done here, but still all the 

following schedules will be checked: 

 

6 

4 

2 

4 2 0 
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J4 

 
 

J3 
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Iteration 1, J4 at t=0: (J1,J2,j3), (J1,J3,J2), (J2,J1,J3), (J2,J3,J1), (J3,J1,J2), (J3,J2,J1). 

Iteration 2, J4 at t=2: (J2,J3), (J3,J2) (J1 stays at t=0 in both cases) 

Iteration 3, J4 at t=5: One schedule to check in which J3 runs at t=6 

Iteration 4, J4 at t=6: No delayed jobs. 

As many profiles in practice can be as long as a hundred jobs, this algorithm is not 

practical. Also, note that in the first iteration, because J1,J2 and J3 capture all 

processors, we don’t really need to traverse all permutations: We know that the most 

expensive jobs (for which cost(ji,1,J4) is largest) should come first; or, most exactly, 

we know that the jobs with the largest cost(ji,1,J4)�ji.t should come first. This is a 

good heuristic in general, since we expect the cheaper schedules to be the ones in 

which the more expensive jobs are delayed less. 

4.6. Complexity Resolution Heuristics 
Several heuristics can be offered for choosing which permutations are checked. These 

heuristics choose one permutation to consider in each iteration – this approach still 

requires O(n3) time to insert or remove a job. 

1. Ascending Scheduled Time (AST) – Sort the delayed jobs by their scheduled 

time (before the delay), and check this permutation only. This heuristic tries 

the most to preserve the current ordering of the delayed jobs. 

2. Ascending Arrival Time (AAT)– Sort the delayed jobs by their j.t0, and check 

this permutation only. This benefits jobs that are already waiting longer. 

3. Descending Utilization (DU) – Check the permutation that results from 

sorting the delayed jobs by descending ji.n � ji.t. This heuristic acknowledges 

that jobs with higher utilization are likely to be delayed more because of their 

size, and therefore they should be scheduled first. 

4. Descending Cost (DC) – Sort the delayed jobs by descending cost to delay 

the jobs for one second, and check this permutation only. This way 

“expensive” jobs will be delayed less, and priorities and fair share issues will 

also be considered. 

5. Descending Priority (DP) – Reschedule first the jobs whose priorities are 

highest. For the common case of equal priorities, a secondary sort by 

ascending arrival time was also used. This heuristic is expected to be more 

responsive to priorities. 
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4.7. Handling Unfinished Jobs 
We have discussed the insert(j) and remove(j) operations in detail, but haven’t 

touched tick() so far. In most implementations this is done trivially: Kill all jobs that 

were supposed to end by now but didn’t, and start executing all jobs that are supposed 

to start now. A slight improvement is not to automatically kill jobs if they are not 

taking anyone’s place. In both cases, A job that has been running for a day on 64 

processors could be killed only because it needed ten minutes more than it declared it 

would. Unless a checkpoint system was used, which in many cases requires extensive 

programmer intervention, the job will be lost. This causes a utilization loss of one day 

times 64 processors, because nothing was actually done on them. 

The solution is to provide accurate time estimates, of course, but most users are far 

from doing so. By using priority scheduling, we can quantify the utilization loss 

caused by killing a job, and can decide whether it would be best to give an unfinished 

job more time at the expense of others, or kill it. This way we can enhance utilization 

further, by letting more jobs get finished, and still satisfy all of the algorithm’s 

requirements. 

When tick() is called and it recognizes an unfinished job j, it calculates the price of 

killing it, which is j.n�u � j.t�t. Then, it creates a new job with the same priority as j, 

same number of processors, and a duration of 10% of j’s declared duration j.t. The 

minimal price for scheduling the new job at the current time is computed (there’s no 

point in trying to schedule it later, since j can’t be preempted). If this price is less than 

the price of killing j, then j gets an extension of 10% of its declared time, and the 

necessary changes in the original schedule are made. Otherwise, j is killed. 

This simple to use method satisfies all the priority requirements, including execution 

guarantee, since if a job is supposed to start now and it can’t be delayed any longer 

(zero slack), than the price of giving j the extension will be infinity. In other cases 

most jobs will get the extension, because the price of killing a job is usually very high. 

This ‘Tick Strategy’ has not been tested within this project. The reason is that all 

production systems as for today kill jobs that do not terminate by their announced 

estimated runtime, or at the better case allow them to run unless they are delaying 

another job. Hence, there are no records of the runtime of jobs that continued running 

even though they delayed other jobs. This idea cannot be simulated. 
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4.8. Summary of Parameters 
The priority scheduler can be altered by several parameters whose roles have been 

scattered in the previous sections. Before turning to the experimental result, we’ll 

review each of them and their expected influence on the algorithm’s behavior. 

� According to requirement XV, The utilization, time, priority and fairness 

considerations can be given weights for their relative importance, in the 

form of 

0 � �u , �t , �p , �f � 1. See section 4.4. 

� The Slack Factor measures how many AWTs we assign as the initial slack 

of a job whose priority is zero. The SF determines how much flexibility we 

give the algorithm on the expense of a tight execution guarantee: A low SF 

will give users a tight bound on the start time of their jobs, but will give the 

algorithm little flexibility to backfill. A high SF will causes the opposite 

behavior. When SF=0 the priority scheduler collapses to conservative 

backfilling. See section 4.3. 

� One of several heuristics may be used to decide which permutations are 

priced at each iteration of the backfilling stage of the scheduling. Although 

some of the heuristics are clearly superior to others, the situation is not 

always clear: As the experimental results will demonstrate, different 

heuristics are preferable for different circumstances. See section 4.6. 

The algorithm requires two other system parameters, which are the total number of 

processors PROCS and the system’s average wait time AWT. The AWT is usually 

known for every production system or can be derived using existing logs and 

maintenance statistics. Using a false AWT in order to change the algorithm’s 

performance has the exact same affect as that of changing the slack factor: In fact, 

using a slack factor of n means that the algorithm should consider the system slack 

time to be n�AWT. Therefore it is advisable to use a realistic AWT and adjust the SF 

according to the administrators’ desires. 

Every job is submitted along with a requested number of processors, expected 

runtime, user priority and political priority. It is assumed that users have an incentive 

to give correct runtime estimates, and that high priorities are not used when 

unnecessary. However, the algorithm does not rely on correct estimates in any way. 
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5. Experimental Results 

5.1. The Simulator 
A simulator for testing the conservative and priority schedulers was written in C++ 

using the Borland C++ Builder environment. The simulator implements all aspects of 

both algorithms. Jobs that exceeded their declared runtime were immediately killed. 

The logs used for the simulations were the Swedish Royal Institute of Technology 

(KTH) files from September 1996 to August 1997. The average number of jobs per 

month is 2357 and the average wait time of the system with 128 processors, under the 

conservative scheduler (which is nearly the same as the average wait time obtained by 

EASY scheduling) is 2401 seconds. The logs contain, for each job, the number of 

processors and both the estimated and actual runtimes of the job. Hence the tests do 

not require a model of the human ability to estimate runtimes, and use actual numbers. 

Using a Pentium 200Mhz with 64MB of memory, the conservative simulator took 

several seconds to complete a month’s schedule, and the priority scheduler took about 

a minute to do the same job. 

5.2. Equal Priorities 
The following simulations tested the performance of the priority scheduler against 

those of the conservative scheduler, assuming that all jobs have equal user and 

political priorities and an unlimited quota. The following parameters were used for the 

priority scheduler: 

�u = �t = �p = �f = 1 , SF = 3 , AWT = 2401 , Heuristic = AST 

Month Average Wait Time: 
Conservative Scheduler 

Average Wait Time: 
Priority Scheduler 

% Improvement 

September 440.6 440.6 0% 
October 3062.7 2504.3 18.2% 
November 4887.0 3774.6 22.8% 
December 2157.2 1904.2 11.7% 
January ‘97 3302.3 2531.9 23.3% 
February 2624.3 2373.9 9.5% 
March 2644.8 2196.9 16.9% 
April 2220.3 1905.2 14.2% 
May 2093.6 1779.2 15% 
June 1443.2 1282.0 11.2% 
July 399.9 354.1 11.5% 
August 1941.5 1670.8 13.9% 
Average 2401.44 2004.46 16.5% 
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The results show an average reduction of 16.5% in wait time over conservative 

scheduling. This result implies that priority scheduling is useful as is, even without 

using the option to assign priorities. The overall average was calculated correctly – 

not as the average of the rows above it, but as the quotient of the total wait time by the 

total number of jobs throughout the year. 

The same simulation using larger 

slack factors modestly improved the 

results (19.25% average improvement 

for SF=9). However, giving too much 

slack to jobs increases the extent to 

which jobs can be starved – for 

example, a slack factor of nine means 

that a job can be delayed up to nine times the average wait time. Therefore a small 

slack factor, which still gives significant improvements, seems like the best tradeoff. 

The average wait time used for all months was the same – the yearly average. If the 

average wait time used is adjusted for each month, the performance of the priority 

scheduler is improved by a few more percents. A good estimation of the average wait 

time is crucial: Using a very small number causes the algorithm to collapse to 

conservative scheduling (too little slack implies an inability to delay jobs), and using a 

very large number increases the chance of (bounded) starvation. 

During the simulation, all jobs were assigned a user priority of zero and a political 

priority of zero. Giving all jobs equal but higher user or political priorities degraded 

the algorithm’s performance, probably because it dims the effect of the scheduler 

priority (which raises the priority of jobs that initially have to wait longer).  

Except for September ’96 in which only 85 jobs were executed, the algorithm 

performs well on a variety of workloads. Logs of other months included between 

1924 and 4060 jobs. 

The ascending scheduled time heuristic used to obtain the above results is the one that 

gives the best performance. Ascending arrival time gave an average improvement of 

13% over conservative scheduling, descending priority gave an average improvement 

of 11.7%, descending cost gave 9.2% and descending utilization gave 8.1%. Notably 

all heuristics improve conservative scheduling (and, hence, EASY as well). 

AWT by Slack Factor

1900.00

2000.00

2100.00

2200.00

1 3 5 7 9 11
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5.3. Differential Priorities 
To test how well the algorithm schedules jobs with a higher priority then others, the 

following mechanism was used. For each of the twelve monthly logs, each fifth job 

was given a user priority of 1.0 and a political priority of 1.0, and all other jobs were 

given zero for both the user and political priorities. This simulates a scenario in which 

a user or a group have a considerably higher priority than others, and they submit jobs 

uniformly. It was implicitly assumed that the “fifth jobs” distribute identically 

compared to other jobs regarding wanted time, used time, processors and so on. 

The results, summed on the table at the bottom of the page, were received using the 

same parameters as in the previous section: 

�u = �t = �p = �f = 1 , SF = 3 , AWT = 2401 , Heuristic = AST 

The results show that the priority change decreased the average wait time of the 

preferred jobs by 2.5% but increased the wait time of the other jobs by 3.9%, 

compared to the best results achieved with equal priorities. In total, assigning different 

priorities had, as expected, a cost – the average wait time of the entire system rose by 

11.1%, from 2004.5 to 2226.2 seconds. This is still an improvement over conservative 

scheduling and EASY, and the decision of whether to support priorities or maximize 

system performance is in the administrators’ hands. In any case, the priority scheduler 

outperforms conservative scheduling and EASY. 

 
Month Equal 

 Priorities AWT 
Unequal 

Priorities AWT 
High Priority 
Jobs AWT 

Low Priority 
Jobs AWT 

September 440.6 440.6 0.0 550.8 
October 2504.3 2783.7 2295.6 2906.0 
November 3774.6 4797.7 4460.2 1882.3 
December 1904.2 2026.0 1814.8 2078.8 
January '97 2531.9 2777.4 2603.8 2820.8 
February 2373.9 2728.7 2369.2 2818.7 
March 2196.9 2220.9 1687.2 2354.6 
April 1905.2 2056.2 1797.4 2120.9 
May 1779.2 1889.3 1491.9 1988.7 
June 1282.0 1374.7 1323.3 1387.6 
July 354.1 372.6 320.2 385.8 
August 1670.8 1847.1 1817.5 1854.5 
Average 2004.46 2226.17 1955.28 2294 
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Overall AWT by Priority Gap

1900.00

2000.00

2100.00

2200.00

2300.00

0 0.5 1 1.5 2

The above simulations, as mentioned 

above, gave a random group of 20% of 

the jobs a user plus political priority of 

two against zero to the other jobs. 

Other simulations using a smaller gap 

exhibited a smaller, but still positive, 

difference in the average wait time 

between the groups. The graph shows the average wait time of the entire system as a 

function of the gap. With the exception of the maximal gap, the overall AWT was 

very close to the optimum (which is obtained in zero gap, e.g. in equal priorities). 

Other simulations tested the effect of increasing the importance of priority in contrast 

with time, utilization and fairness, for example by assigning �p = 1, �u = �t = �f = 0.2. 

These tests indicated a slight increase in the wait time gap between the preferred and 

the regular groups, but also exhibited a considerable degradation of the average wait 

time of both groups. In several cases, the average wait time of the preferred group was 

worse than that of the �u = �t = �p = �f = 1 setting. It seems that a high �u and �t are 

crucial to the effectiveness of the scheduler. 

The results that were achieved using the descending scheduled time heuristic were 

actually only the second best. Descending arrival time performed marginally better. 

Descending priority is also very close, hinting that this performance level is probably 

the best that can be expected. The following table summarizes the performance of the 

five heuristics, which were all tested using the full set of logs. All numbers are yearly 

averages, in seconds. 

 
 Ascending 

Scheduled Time 
Ascending 

Arrival Time 
Descending 

Cost 
Descending 
Utilization 

Descending 
Priority 

Equal Priorities AWT 2004.5 2088.5 2179.9 2206.0 2120.0 
Unequal Priorities AWT 2226.2 2223.3 2250.1 2279.8 2228.5 
Performance Loss1 11.1% 10.9% 12.3% 13.7% 11.2% 
      
High Priority Jobs AWT 1955.3 1952.6 1988.1 2048.9 1962.3 
Low Priority Jobs AWT 2294.0 2291.1 2315.7 2337.6 2295.1 
Gap2 338.7 338.5 327.6 288.7 332.7 
 
1 The ratio of increase in the total average wait time due to the differential priorities. This 

increase is measured relatively to the AST result for equal priorities, which was the best 
one, and not relatively to the heuristic’s own equal priorities performance. 

2 The average difference between the low priority group and the high priority group’s average 
wait times. 
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6. Conclusions 
The many production installations of EASY around the world prove that backfilling is 

advantageous over FCFS allocation of processors to jobs. The ability to backfill 

increases the overall system performance by being more responsive to short jobs 

while preventing the starvation of long batch jobs. However, while EASY takes an 

approach of aggressive backfilling, a more conservative approach exhibits the same 

performance and retains the predictability of the FCFS scheduler. 

Further simulations on the conservative scheduler pointed out that inaccurate 

estimates of runtimes, namely overestimation, improve the algorithm’s performance. 

This led to the idea of slack based backfilling: If the estimated runtime of a job is j.t, 

we should be able to delay it by j.t + j.s, where the job’s slack j.s determines how 

flexible we let the backfilling be. Such an approach also means that, in contrast with 

EASY or conservative backfilling, we would have to consider many alternative legal 

backfilling combinations each time the profile changes. 

Both of these properties combine nicely with the support in priorities: Low priority 

jobs could be assigned more slack, meaning that we allow delaying them more than 

important jobs; Priorities can also be taken into account when deciding between the 

many available schedules. As the priority scheduler was developed it was clear that 

besides the added functionality of prioritization, it would not be a surprise if the 

algorithm would improve the existing backfilling algorithms even in systems which 

don’t use priorities. 

Indeed, the experimental simulations show that the priority scheduler is better than 

both EASY and conservative backfilling on the tested production systems. The 

scheduler encapsulates both extra flexibility, required to improve the conservative 

scheduler, and sufficient execution guarantees, required to assure that long jobs do not 

starve and affect the entire system’s performance. 

The differential priorities simulations show that while the high priority jobs indeed 

exhibited a lower wait time than in the equal priorities case, the inequality in priority 

distribution has a cost in terms of the overall system performance: The low priority 

jobs had to wait more than before. However, This is intuitive and expected, and it 

should be stressed that the simulations show that the low priority jobs scheduled by 

the priority scheduler waited on average less than in EASY. 
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The scheduler includes a relatively high number of parameters, and it should be 

adjusted to the system it’s installed on. Two delicate parameters seem to be the slack 

factor and the utilization and time importance weights; setting any of them to a very 

low value causes the scheduler to collapse to the performance of EASY and 

conservative backfilling, and also decreases the gap between high and low priority 

jobs. Using a very low average wait time parameter led to similar mediocre results. 

This leads to the conclusion that while the algorithm supports priorities and high 

predictability, it is crucial to give a considerable weight to utilization in pricing 

profiles, because this affects the performance of both high and low priority jobs. 

Although backfilling was originally developed for the SP2, and was so far tested 

using workload traces from SP2 sites only, it is applicable to any other system using 

variable partitioning. This includes most distributed memory parallel systems in the 

market today. 
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