
Session-Based, Estimation-less, and Information-less Runtime Prediction
Algorithms for Parallel and Grid Job Scheduling

David Talby Dan Tsafrir Zviki Goldberg Dror G. Feitelson

Hebrew University of Jerusalem, Israel
Email: {davidt,dants,zviki,feit}@cs.huji.ac.il

Abstract

The default setting of most production parallel job
schedulers is FCFS with backfilling. Under this setting,
users must supply job runtime estimates, which are
known as being highly inaccurate and inferior to
system generated predictions. Recent research
revealed how to utilize system predictions for
backfilling, and this potential performance gain
motivates searching for better prediction techniques.
We present three prediction techniques using
decreasing levels of information as is suitable for the
situation at hand. The first is based on "user sessions":
continuous temporal periods of per-user work. This
algorithm exploits the entire long-term historical data
of the workload, along with user runtime estimates.
The second is "estimation-less", that is, uses historical
data only, relieving users from the annoying need to
supply estimates. The third is completely "information-
less" and is suitable for cases in which neither
historical information nor estimates are available, as
happens in some grid environments. We evaluate the
algorithms by simulating real data from production
systems. We find all of them to be successful in terms of
both accuracy and performance.

1. Introduction
The scheduler is a key component in determining

the overall performance of a parallel system. Improving
it can have a dramatic visible effect on a system's
usability. The most dominant parallel scheduling
algorithm to date [3] is EASY, that is, FCFS (First-
Come First-Served) with backfilling. Backfilling is an
optimization that allows small jobs to execute ahead of
their time provided they do not delay the first queued
job [12]. This simple optimization is known to be
extremely effective: it dramatically improves utilization
[6] and yields performance which is comparable to that
of more sophisticated algorithms that utilize preemption
and migration [17].

 Upon submittal, backfilling mandates users to
estimate how long their jobs will run and bases its
scheduling decisions on this information. It is well
known that user estimates are highly inaccurate [8, 10,
16] and that it's possible for system-generated
predictions that are based on users history to do a far
better job [4, 9, 10, 14]. Nevertheless, system predictions
were never incorporated into production backfilling
schedulers due to two reasons: First, several studies
have shown that making user estimates even less
accurate, for example by doubling them, actually
improves performance [10, 19]. And second, there was
no clear way of handling the case of job runtimes that
exceed system-generated predictions.

In a recent study [15] we have managed to
overcome the technical difficulty presented by too-
short predictions, which made it possible to incorporate
predictions within backfilling schedulers. We have also
shown that doubling of estimates improves
performance because it implicitly nudges the system to
favor shorter and smaller jobs at the expense of longer
and bigger jobs, effectively trading off fairness for
performance. We have further shown that both
performance and fairness can benefit if (1) estimates
are improved instead of doubled, (2) shorter jobs are
explicitly backfilled first (SJBF), and (3) the base
algorithm remains FCFS, that is, non-backfilled jobs
are scheduled by arrival time, and backfilling is
allowed only when it doesn't interfere.

The vast popularity of backfilling among
production systems, the new ability to make backfilling
utilize system predictions, and the significant resulting
improvement in accuracy and performance, provide
strong incentive for improving prediction techniques.
Additional motivation is provided by the fact that
improved accuracy is becoming a design goal by itself
for schedulers, in particular in grid environments which
utilize co-scheduling [13]. Finally, the ability to use
system-predictions for backfilling makes it theoretically
possible (and rather tempting) to eliminate user
estimates altogether. This is highly desirable as it
simplifies job submittal, and rids users from an annoying
task which they perform poorly [8].

Considering the motivation as presented above, our
effort in this paper is threefold. We wish to devise three
prediction algorithms that utilize a decreasing amount
of information as is suitable for the situation in question:
1. Session based algorithm. This algorithm uses all

the information available to traditional backfill
schedulers, namely accumulated historical data
about users and the user runtime estimates of
submitted jobs. It expands the accumulated art [2,
4, 9, 14], and its novelty is that it is based on user
sessions � identifying consecutive temporal work
periods of users and basing the predictions on the
jobs populating these sessions.

2. Estimation-less algorithm. The next step we take
is refining the above algorithm such that it ceases
using user estimates. Once this is established and
incorporated into a backfill scheduler, users are
able to freely submit jobs, without estimating how
long they will run. Comparing results obtained
using this predictor relative to the previous one
reveals the true value of information of user estimates.

3. Information-less algorithm. This predictor does
not base its predictions on any past or present
information. Such a predictor is often required in
the context of grid, where a local scheduler must
schedule a remote job. The history of the job’s
user will usually not be available, since the user’s
jobs ran on multiple machines, and the available job
attributes may vary according to the grid’s
protocols.

We have embodied these prediction algorithms in a
backfill scheduler. This combination provides a complete,
highly practical scheduling solution that improves the
bottom-line performance of current systems, in addition to
improved accuracy. We provide empirical measures of
performance and accuracy. In addition, this solution is
usable in systems which serve a mix of the above three
situations – for example, a local system also serving
some remote requests, or featuring optional user estimate
– although we do not provide empirical results here, due
to the lack of a representative workload.

The rest of this paper is organized as follows.
After providing necessary background and surveying
related work (Section 2), we suggest a methodology for
comparing predictors in terms of accuracy and
performance (Section 3). Section 4 uses this
methodology to provide reference on some previously
suggested prediction algorithms. Sections 5, 6 and 7
deal with the three predictors noted above,
respectively. Finally, Section 8 concludes.

2. Background and Motivation
2.1. Backfilling

The parallel computers considered in this paper are
of the most widespread type today, which use variable
partitioning. Upon submittal, a user specifies the
number of processors the job requires. The job is then
placed in a queue until enough resources are available;
then, it is assigned the processors it needs for its
exclusive use and runs to completion. As stated earlier,
most parallel job schedulers today – including IBM’s
LoadLeveler, Maui [5], Moab and others – use EASY
as their default settings [3]. The backfilling optimization
employed by EASY allows jobs to leapfrog over the first
queued job provided they do not delay it, i.e. run
beyond the shadow time. This is illustrated in Figure 1.

Figure 1: EASY scheduling reduces fragmentation by using
backfilling. The numbers indicate jobs' arrival order. It
would be impossible to backfill job 4 had its length been
more than 2 time units, or else 3 would have been delayed.

2.2. Inaccuracy of User Estimates
4

The popularity of EASY has enabled empirical
studies about the quality of user estimates, based on
accounting logs from multiple installations [11]. These
show estimates are generally inaccurate [10, 15, 16], as
reproduced in Figure 2.

The seemingly promising peak at 100%
unfortunately reflects jobs that reached their allocated
time and were then killed by the system. The hump
near zero reflects jobs that failed on startup. The rest of
the jobs, that actually ran successfully, have a rather
flat uniform-like histogram – meaning that for such
jobs, any level of accuracy is almost equally likely.

Figure 2: Accuracy histograms of user runtime
 estimates on four production systems

Thus user estimates are usually poor, probably
since users find the motivation to overestimate, so that
jobs will not be killed, much stronger than the
motivation to provide accurate estimates and enable the
scheduler to perform better packing. However, a recent
study [8] indicates users are quite confident of their
estimates, and probably would not be able to do better.

2.3. Using Predictors to Improve Performance
Until recently, motivation for devising runtime

prediction algorithms and incorporating them into
production schedulers was limited for two reasons:
Findings which suggested that accuracy hinders
performance, instead of improving it; and lack of other
needs for accuracy. Both of these reasons have been
recently refuted.

Several studies [10, 19] have found a surprising
yet consistent result: EASY performs better if estimates
are doubled, which means performance is actually
improved if estimates are made even less accurate.
This is shown in Figure 3 by bars associated with user
estimates allegedly suggesting improved accuracy
negates performance. However, in [15] we have shown
this argument to be faulty, as is demonstrated by bars
associated with actual runtimes in Figure 3. Indeed,
doubling improves performance. But this argument can
be applied with far greater success if the initial
estimates are better, as it is evident that doubling of
perfect estimates outperforms the doubling of user
estimates. It therefore reasonable to expect, and was
verified in [15], that doubling of high quality system
predictions will have a similar effect.

Doubling improves performance by creating a
dynamics in which the first queued job is delayed
beyond its designated start-time due to shorter jobs that
are implicitly prioritized. This effect can be partially
emulated without this delay, if instead of doubling,
shorter jobs are explicitly backfilled first: Shortest-Job-
Backfilled-First scheduling (SJBF) [15].

In addition to being inaccurate, estimates embody
one additional characteristic that is particularly harmful
for backfilling performance: they are inherently modal
[16]. Users tend to choose "round" values – for
example, one hour – as estimates, resulting in 90% of
the jobs repeatedly using the same 20 values. Such
modality significantly limits the scheduler's ability to
exploit existing holes in the schedule. Most notable is
the maximal allowed value which is always very
popular, despite the fact that jobs which use it are
usually short. For example, in the CTC trace roughly a
quarter of the jobs used this value. Naturally, such jobs
will never be backfilled, hindering overall performance.

Figure 3: Performance of EASY under different runtime
predictions: user estimates, actual runtimes, and both doubled

2.4. Using Predictors to Improve Accuracy
In addition for the motivation to improve

performance, two other developments raise the
requirement for accurate predictions of parallel jobs.
The first is advanced reservation for grid co-allocation,
shown to considerably benefit from better accuracy
[13]. Knowing in advance when remote processors will
be available is crucial for making reservations work.

The second is scheduling of moldable jobs that can
utilize any number of processors [2, 14]. For such jobs
the goal of the scheduler is to minimize response time,
thus it must decide whether it's preferable to start
running a job on the processors that are available now,
or wait for more processors to accumulate. A good
prediction of how long current jobs are expected to run
is obviously crucial to making the correct decision.

2.5. Related Work

Several runtime prediction schemes have been
published. Smith et al. suggested utilizing genetic
algorithms to dynamically determine the set of jobs
according to which predictions will be made [14].
Gibbons used fixed set criteria, but his predictor
interface was complicated by varying confidence levels
[4]. Kapadia et al. used instance based learning [7]. All
these predictors are much more complex than the basic
EASY scheduler; in contrast, in [15] we've shown that
a simple prediction of averaging the runtime of the last
two jobs by the same user is extremely successful.

In this paper we also propose that predictors will
obey a standardized interface (Listing 1). This will
allow schedulers to easily incorporate any previously
implemented predictors, regardless of their complexity.

 KTH CTC SDSP2 BLUE

W
ai

t T
im

e
(M

in
ut

es
)

90

100

110

120

0

5

10

15

20

25

 250

280

310

340

370

100

110

120

130

B
ou

nd
ed

 S
lo

w
do

w
n

65

70

75

80

85

90

3

3.5

4

4.5

5

 70

80

90

100

26

28

30

32

34

36

 Estimate Estimate X 2 Runtime Runtime X 2

3. Predictors Comparison Framework
This section defines our methodological

framework for comparing prediction algorithms: The
scheduling algorithm which hosts predictors, the
metrics used to measure performance and accuracy,
and the empirical data set.

3.1. Standardized Predictor Interface
A scheduler is an event-based program, where

events are job arrival or termination. Upon arrival, the
scheduler is informed of the number of processors the
job needs and its user estimated runtime. It can then
simulate the job’s execution or place it in a queue.
Upon termination, the scheduler is notified and can
schedule other queued jobs on free processors.

A runtime prediction algorithm is also an event-
based program, used internally by a scheduler to handle
four events as specified in Listing 1.

struct Prediction { Job job, int prediction }
list<Prediction> onJobArrival (Job job)
list<Prediction> onJobStart (Job job)
list<Prediction> onJobTermination (Job job)
list<Prediction> onJobDeadlineMissed (Job job)

Listing 1: An abstract predictor standardized interface
In each of these events, more information is

available to the predictor, so it may decide to adjust
the predictions of zero or more jobs (whether waiting
or running). It therefore returns a list of updated
predictions for these jobs, which may be empty. The
only constraints are that a prediction must be given for
a job on its arrival, must be given when a job has
missed its deadline (meaning that it's still running, but
its runtime has just exceeded its current prediction),
and must be bigger than the job’s current runtime, if it
already began to run.

The simplest predictor would return a job's
estimate upon its arrival and an empty list upon its start
and termination (there will be no deadline misses,
because a job is killed once its user estimate is
reached). Note that this is actually plain EASY
scheduling. A scheduler that uses the above interface
would be able to quickly replace and utilize any new
predictor that obeys this interface, as are all predictors
appearing in this paper.

3.2. Measuring Performance
The effect of a given predictor on a given system is

highly dependent on the scheduler being used.
Selecting the scheduler used for empirical experiments
in this paper was based on the following criteria:

1. The scheduler’s performance should improve
when the predictor’s accuracy is improved.

2. The scheduler should maintain accepted fairness
norms, and not be subject to starvation.

3. The scheduler should be practical – easy to
implement and integrate in current systems.
Evidence shows [15] that a number of schedulers

abide these criteria. These schedulers include those
which employ the “doubling optimization", since as
discussed earlier choosing whether to double the
prediction or not is a property of the scheduler, not the
predictor. Out of the possible reasonable choices, we
have chosen to use Shortest-Job-Backfilled-First (SJBF)
as the base scheduler. It is identical to EASY, except for
three places:
1. Use predictions instead of user estimates to

compute the shadow time.
2. Use predictions instead of estimates to test if a job

terminates before the shadow time.
3. Backfill jobs in order of ascending predictions

(shortest job first), instead of ascending arrival
time (first come first serve).
SJBF was chosen for three reasons. First, it

explicitly prioritizes shorter jobs, which makes the
benefit of improved accuracy most pronounced
[1,4,7,14,15,19]. Second, it does so without scarifying
fairness. And third, it is very easy to implement in
practice, particularly in EASY or Maui based installations.

Performance is measured in terms of average wait
time of jobs and bounded slowdown [10], as is
customary in this domain.

3.3. Measuring Accuracy
Defining and measuring the accuracy of

predictions is non-trivial for several reasons. First,
since a prediction may be lower than a job’s actual
runtime, it may have to be changed during its execution
– so one job can have several different predictions during
its lifetime. Second, since most prediction algorithms
rely on history, they must rely on the list of terminated
and running jobs – which means that their accuracy
also depends on the scheduler being used, in addition
to the workload. Third, different metrics may be
sensitive to different aspects of accuracy, as is the case
in performance metrics. For example, the slowdown
and wait time metrics don’t always agree, as the former
is dominated by short jobs and the latter by long ones.
This is why more than one metric is often required.

We therefore define and measure two accuracy
metrics: absolute inaccuracy, defined as the absolute
difference between the prediction and the actual

runtime (analogous to wait-time and similarly desired
to be as small as possible), and relative accuracy,
defined as the ratio of runtime to prediction (analogous
to slowdown). When analyzing a full log, we consider
the averages of these metrics, which means relative
accuracy is dominated by short jobs, while absolute
inaccuracy is dominated by large prediction errors. To
avoid under- and over-predictions canceling each other
out when relative accuracy is averaged, we always set
the smaller value to be the numerator in the ratio, and
so, relative accuracy is always within 0% to 100%.
Equation 1 formally defines the two metrics.

PRAI ��

 �
�

�
�

�

�
�

�
�

	

�

�

�

PRifRP

PRifPR

PRif

RA

/

/
1

Absolute Inaccuracy (AI) Relative Accuracy (RA)

Equation 1. Accuracy metrics. R stands for the job's
actual runtime and P for its associated prediction.

These definitions only work for jobs that have a
single prediction throughout their lifetime. In the
frequent case of under-predictions (and upon any other
prediction update initiated by the predictor), jobs’
predictions change. We therefore use its average
weighted accuracy. Weights are determined according
to the durations in which each prediction was in effect.
Formally, if T0 and TN are a job’s submission and
termination time, and Ai is its accuracy (absolute or
relative) from time Ti-1 to Ti (where Ti � Ti+1), then its
average weighted accuracy is:

)(
)(

1
11

0
��

���
�

� ii
N

i i
N

TTA
TT

A

Equation 2. Accuracy in the face of multiple predictions.

3.4. The Dataset
The dataset used in this study consists of four logs

from the Parallel Workloads Archive [11]. Together,
the logs constitute over 400,000 jobs and six years of
real user activity, under different load conditions in
different sites (Table 1). All logs have been studied
before, and undergone extensive cleaning from errors,
flurries and other minor issues. They are widely
regarded as representative of parallel computer
workloads, including their user estimates [16].

Abbrev. Location Nodes Jobs Weeks Utilization
SDSP2 San Diego SC 128 59,725 105.2 84%

CTC Cornell
Theory Center 128 77,222 48.5 56%

KTH Swedish Inst.
of Technology 100 28,490 48.6 69%

BLUE San Diego SC
Blue Horizon 1,152 243,314 140.1 76%

Table 1: Parallel logs used in this study.

4. Reference Predictors
Now that our methodology is in place, we begin by

studying four existing prediction algorithms, whose
metrics will be used as reference from now on. The
first algorithm is the perfect predictor, which guesses
the actual runtime. This is a theoretical, optimal
predictor, since the actual runtime is not known in
advance. The second predictor is the constant predictor:
predict the same, constant runtime for all jobs. This
predictor is a reference to what can be achieved with no
information, in contrast to Perfect which has full
information. The third predictor is the estimate predictor:
use the user estimate as the prediction. Formally:

PERFECT Predictor: OnJobArrival return <job, job.runtime>
CONSTANT Predictor: OnJobArrival return <job, Constant>
ESTIMATE Predictor: OnJobArrival return <job, job.estimate>

Listing 2. Reference Predictors

Note that SJBF with the Estimate Predictor is
different from the original EASY in two aspects. First,
it backfills jobs by order of ascending estimates,
instead of ascending arrival time (FCFS). Second, it
updates its prediction on deadlines misses – events in
which the job’s runtime exceeds its prediction. This
can happen if a job’s runtime exceeds its estimate
(which happens in practice in rare cases), and is
handled, as suggested in [15], by gradually increasing
the prediction by predefined increasing values. This is
also the strategy used in the Constant Predictor, if the
runtime exceeds the constant. All other predictors in
this paper use the following strategy: If a deadline is
missed and the current prediction is smaller than the
user estimate, then raise it to be equal to the user estimate;
else, raise it by the predefined gradual increments.

The fourth predictor we will compare ourselves to
is the Recent User History Predictor, presented in [15]
and named EASY++ there. To the best of our
knowledge, it is the best performing scheduler/predictor
combination to date abiding our criteria from section
3.2. It is based on SJBF as well, and predicts runtimes
based on a simple rule: A job’s prediction is the
median of the runtimes of the three last jobs of the
same user.

OnJobArrival:
if there exist at least three terminated jobs of job’s user then
 return [job, median of last three terminated jobs of job’s user]
else
 return [job, job.estimate]

Listing 3. Recent User History (RUH) Predictor

The RUH Predictor can be configured by several
parameters, underlined in the above pseudo-code: how
many past jobs to consider, which metric to use on
them, should running or only terminated jobs be
considered, and how to handle the first jobs of a new
user. We have simulated it under its best published
parameter configuration1, in two variants – with and
without propagation. Propagation is an optional
optimization, which forwards new information on a job
– specifically, its actual runtime when it terminates or
its updated prediction on a deadline miss event – to the
rest of the waiting and running jobs of the same user.
The predictions of these jobs are then recomputed
based on the updated information.

Table 2 and Figure 4 compare the reference
predictors. As expected, EASY is substantially inferior
to SJBF, even under the Estimate predictor. RUH
behaves almost the same with and without propagation,
and improves both performance and accuracy further,
up to about two thirds of the potential gain, as assessed
by the results of the Perfect predictor.

1 An improved configuration of RUH yielding better results
was found since publication – see [15] for details.

Improvement over EASY,
Average over all logs:

Predictor:

Wait
Time

Bounded
Slowdown

Absolute
Inaccuracy

Relative
Accuracy

Perfect 22% 47% 100% 176%
Estimate 11% 22% 0% 0%
RUH without
Propagation

18% 32% 40% 69%

RUH with
Propagation

17% 32% 41% 71%

Table 2. Performance and accuracy gain of SJBF
with reference predictors over EASY

5. Session-Based Prediction
5.1. Rationale
It is well known that human users typically work in
sessions – periods of intense, repetitive work. A recent
study [18] formalized this notion, and identified five
stable clusters of sessions in parallel workloads. It was
also found that in four of the session clusters, consisting
of over 95% of the observed sessions, the variance
between jobs in the session is very small – a median of

 KTH CTC SDSP2 BLUE
W

ai
t T

im
e

(M
in

ut
es

)

0

20

40

60

80

100

120

0

4

8

12

16

20

24

0

50

100

150

200

250

300

350

400

0

20

40

60

80

100

120

140

B
ou

nd
ed

Sl

ow
do

w
n

0

20

40

60

80

100

0

1

2

3

4

5

0

10

20

30

40

50

60

70

80

90

100

0

5

10

15

20

25

30

35

40

A
bs

ol
ut

e
In

ac
cu

ra
cy

 (M
in

.)

0

10

20

30

40

50

60

70

80

90

0

50

100

150

200

250

0

20

40

60

80

100

120

140

160

180

0

20

40

60

80

100

R
el

at
iv

e
A

cc
ur

ac
y

(%
)

0

10

20

30

40

50

60

70

80

90

100

0

10

20

30

40

50

60

70

80

90

100

0

10

20

30

40

50

60

70

80

90

100

0

10

20

30

40

50

60

70

80

90

100

 EASY Estimate Const-1Sec RUH-NoProp RUH-Prop Perfect
 Figure 4: Performance and Accuracy Comparison of Reference Predictors

CTC, 20 Sep 1996, User #289 BLUE, 21 Apr 2001, User #315

Arrival Size Est. Exe# RT

19:49:20 16 300 3012 91

19:52:32 12 300 3012 67

19:57:45 12 300 3012 348

19:58:33 16 300 3012 342

20:05:25 16 300 3012 105

20:08:17 16 300 3012 87

20:10:07 200 300 3032 332

20:15:54 100 300 3033 314

20:22:15 200 300 3033 389

20:31:34 200 1800 3033 168

20:31:45 200 1800 3033 352

20:33:25 200 1800 3033 348

Arrival Size Est Exe# RT

04:29:56 8 30600 N/A 31

04:30:14 8 30600 N/A 28

04:33:16 8 30600 N/A 31

04:36:26 8 30600 N/A 28

04:37:09 8 30600 N/A 43

04:40:33 8 30600 N/A 33

04:43:29 8 30600 N/A 29

04:46:34 8 30600 N/A 29

04:49:40 8 30600 N/A 28

04:54:37 8 30600 N/A 28

04:58:04 8 30600 N/A 30

05:06:57 8 30600 N/A 28

Table 3. Two Sample Sessions

less than two unique runtimes and levels of parallelisms
within a session. This explains why the Recent User
History Predictor is successful, but also suggests that
basing a predictor directly on sessions may be even better.

Table 3 shows two stereotypical sessions. On the
right is a session from the BLUE log, in which the user
repeatedly ran the same job; note how runtimes are
easy to predict based on history, but on the other hand
have no correlation to the user estimate. On the left is a
session from the CTC log, which shows how
sometimes the user hints about changes in runtime by
changing the number of processors, the estimate, or the
executable. Based on these observations, we designed
the session-based predictor to use both proximity in
time and similarity in job attributes to decide on which
jobs a new prediction should be based.

5.2. Algorithm
The Session-Based History (SBH) Predictor works

as follows. It maintains each user’s past jobs
partitioned by sessions, where two jobs are defined to
be in the same session if the think time between them
(the time between the termination of the first one and
the arrival of the next) is smaller than twenty minutes.
This threshold is taken from [18], where sensitivity
analysis showed that it is stable to changes within the
same order of magnitude. We have run simulations
using different thresholds, including ones far different
from 20 minutes, and concluded that other values
sometimes show comparable performance, but cannot
be used to obtain consistent superior performance or
accuracy. These results will not be presented here due
to lack of space. All simulation results presented here
use the 20-minutes value.

In addition, the SBH Predictor requires an ordered
list of similarity criteria, by which jobs in a session are
matched to the job for which a prediction is required.
Each criterion defines whether the number of
processors (P), the user estimate (E), or the executable

OnJobArrival (Job job):

 for each criterion in the similarity criteria list
 for each of the last three sessions of job’s user,
 ordered by descending start time

 if there exists at least one terminated job in session,
 which matches the current similarity criterion, then

 return <job, median of all matching jobs in session>

 // (following line is only reached if no match was found)
 return <job, job.estimate>

Listing 4. Session Based History (SBH) Predictor

(X) should match; the algorithm only uses jobs that
match the given criterion to generate a prediction. For
example, if the criteria list is [PEX,PX,EX], then the
algorithm will first look only for jobs that match the
new job in parallelism, estimate, and executable; if
there is no such job in the current session, it will look
for jobs that match in parallelism and executable; and if
there is no such job as well, it will look for jobs that
match in estimate and executable. If no matching job is
found at all, then the algorithm repeats the search in the
previous sessions, in descending order. If no matching
job is found in any session (for example, in the first job
of a new user, or when a user starts working with a new
executable), the algorithm resorts to using the user
estimate as the prediction (Listing 4).

The algorithm can be configured in several ways,
which are underlined in the above pseudo-code. We
found two parameters to be the most influential. The first
is the similarity criteria list, since it defines the balance
between predicting by exact matches, and not being able
to predict at all (when the criteria is too strict). The
second is the order of the algorithm’s two loops. The
algorithm as explained above and defined in Listing 4
uses “Depth-First Search” (DFS): Its first priority is to
find an exact match to the current criterion, at the
expense of relying on the farther past. For example, if the
setting is [PEX,PX,EX], then this algorithm will prefer to
predict based on a job that matches in parallelism,
estimate, and executable three sessions ago, rather than
predict based on a job that matches only in parallelism
and executable from the current session. An alternative
strategy would be “Breadth-First Search”, in which the
two loops are exchanged, and the algorithm first looks at
the current session for any match to the similarity criteria
list, and only searches past sessions if no match is found.

5.3. Empirical Results

The SBH Predictor can be configured in a vast
number of ways, but most parameters and combinations
have a marginal effect. Table 4 and Figure 5 compare
the performance and accuracy of RUH with the two best
SBH configurations we have found. Note that the
numbers indicate improvement over the best RUH

configuration. This translates to a 24% gain in wait
time and 47%-53% in absolute inaccuracy over the
currently deployed EASY-based schedulers.

After analyzing thousands of simulations, we
uncovered several other interesting properties of the
session-based predictor, summarized in the next
paragraphs. These insights may be applicable to the
design of other predictors, as well as for session-based
analysis of parallel workloads for other reasons.

Improvement over RUH,
Average over all logs:

Configuration:

Wait
Time

Bounded
Slowdown

Absolute
Inaccuracy

Relative
Accuracy

Unlimited DFS,
[PE,P,E,*],
Propagation

5% 4% 5% 2%

Unlimited DFS,
[E,P,X],
Propagation

4% 8% 9% 3%

Table 4. Best SBH configurations and their gain over RUH

Searching in sessions far back in history is useful.
In contract to the RUH Predictor, SBH prediction
requires a users’ entire history to work optimally.
Limiting the algorithm to look for less than 10 sessions
back deteriorates performance, and surprisingly, even
limiting the algorithm to 30 sessions results in
performance that is 2%-3% worse, in all logs, than that
of the equivalent unlimited configuration. Only a small
fraction of a system’s users even have that many
sessions, so the effect must be caused by better
understanding of these few extremely active users.

Depth-First Search is significantly better than
Breadth-First Search. Over a large set of simulations,
DFS performed better than the equivalent BFS
configuration in over 90% of the cases. The average
gap in favor of DFS, over all four logs, was 5% in
average wait time and 17% in average absolute error.
Note that this happens even though we use DFS to
unlimited depth (not just 3 sessions back). In plain
words, basing a prediction on an exact match that is

 KTH CTC SDSP2 BLUE
W

ai
t T

im
e

(M
in

ut
es

)

0

15

30

45

60

75

90

105

0

2

4

6

8

10

12

14

16

18

 0

50

100

150

200

250

300

350

400

450

 0
10
20
30
40

50
60

70
80
90

100
110

B
ou

nd
ed

Sl

ow
do

w
n

0.0

10.0

20.0

30.0

40.0

50.0

60.0

70.0

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

 0.0

10.0

20.0

30.0

40.0

50.0

60.0

70.0

80.0

90.0

 0.0

5.0

10.0

15.0

20.0

25.0

A
bs

ol
ut

e
In

ac
cu

ra
cy

 (M
in

.)

0

10

20

30

40

50

60

70

80

90

100

0

25

50

75

100

125

 0

15

30

45

60

75

90

 0

10

20

30

40

50

60

R
el

at
iv

e
A

cc
ur

ac
y

(%
)

0
5

10
15
20
25
30
35
40
45
50
55
60
65

0
5

10
15
20
25
30
35
40
45
50
55
60
65

 0
5

10
15
20
25
30
35
40
45
50
55
60
65

 0
5

10
15
20
25
30
35
40
45
50
55
60
65

RUH-Prop SBH-[PE,P,E,*] SBH-[E,P,X] NoEst-Balanced NoEst-Unbal.
Figure 5: Performance and Accuracy Comparison of RUH, SBH and No-Estimate Predictors

five months old is better than basing it on an
approximate match that is five minutes old. According
to the previous paragraph, this happens in practice.

Session-Based Prediction based on proximity in
time alone in not enough. Using similarity criteria
such as [*] (match any job) or [PEX,*] resulted in
performance that is even worse than that of RUH. It
seems that separating sessions by means of the think
time between jobs alone is not enough to distinguish
between different activities of the user, at the level of
precision that is required for accurate runtime prediction.

Generalizing the above three paragraphs, we safely
conclude that exact similarity is more important than
proximity in time for runtime prediction. Thanks to this
principle, the session-based predictor is the first to
successfully use to full history of a parallel workload.

Propagation is generally better than non-
propagation. Enabling propagation means taking
advantage new information sooner, and indeed using
this optimization was preferable in 75% of the cases,
resulting in an average improvement (over all four
logs) of 10% in average wait time and 6% in average
absolute error.

6. Estimation-Less Prediction
The Session-Based Predictor uses all the available

information about a job to predict its runtime. In this
section we present predictors, session-based as well,
for the case in which user estimates are not available.
This can be used to relieve users from the need to supply
estimates, as well as in other situations where estimates
are simply not available, or not available for all jobs.

Session-Based Predictors enable us to build the
highest performing predictors to date that don’t use
user estimates, since SBH relies on estimates less than
previous algorithms. By measuring the performance
and accuracy loss caused by discarding estimates, we
enable making an informed decision. Building a No-
Estimate SBH Predictor requires replacing the estimates
in the three places where they are potentially used:

1. As a default prediction in case no matching past job
is found (the last line in Listing 4 is reached). This
happens in slightly less than 1% of the jobs in the
predictors given in this section. The estimate can be
replaced here by always predicting 1 second (i.e.
applying the Constant predictor).

2. As a strategy for dealing with missed deadlines, as
long as the job’s current runtime is smaller than its
estimate. The way to replace the estimate here (as
we found empirically) is by multiplying the current
prediction by a factor of 10 on every miss.

Configuration: Improvement over RUH,
Average over all logs:

 Wait
Time

Bounded
Slowdown

Absolute
Inaccuracy

Relative
Accuracy

Balanced,
DFS,
[PX,P,X,*]

-5% -4% -13% 1%

Unbalanced,
DFS,
[PX,P,X,*]

-8% -11% N/A 1%

Table 5. Best No-Estimate SBH Configurations and Their
Performance Relative to RUH

3. As a similarity criterion for matching past jobs to the
predicted job. Obviously, Estimates cannot be used in
similarity criteria lists if they are not available.
Table 5 and Figure 5 present two high-performing

SBH variants that do not use estimates. Both variants
don’t use propagation, and using it has a negligible
effect. The “Balanced” variant stops the exponential
growth of predictions after it hits a certain (high)
threshold, while the “Unbalanced” variant does not.
Not stopping the exponential growth results in better
performance in three of the four logs. However, this
comes at the expense of an out-of-bounds absolute
error, and also at some cost to fairness, since the high
over-estimations that are inevitably created enable
more backfilling of short jobs (that is, predicted-to-be-
short jobs), at the expense of long ones.

The empirical results show that the best
configuration of SBH without user estimate is still not
as good as RUH. Compared to the best SBH predictor
with user estimates, the average wait time is about 10%
worse, and the average absolute inaccuracy is 22%
higher. So the bottom line is, as expected, that
requiring users to indicate estimates for submitted jobs
is still useful when predictors are used. On the other
hand, if user estimates are not available, the above
predictors are the best alternative to date.

7. Information-Less Prediction
The problem of runtime prediction with no

information is highly practical in grids and other
distributed co-scheduled machines, where a single user
session may be executed on several separate
computers, and so the history of an incoming job may
not be available to a local scheduler. The remote
scheduling protocol may not even transfer original user
identifiers or estimates, let alone complete histories.

Information-less predictors are also interesting since
they help to assess the value of information that the more
informed predictors enjoy, in terms of the difference in
performance and accuracy between them. This can aid in

Improvement over EASY,
Average over all logs:

Predictor:

Wait
Time

Bounded
Slowdown

Absolute
Inaccuracy

Relative
Accuracy

Constant
1 Second

16% 13% 41% 37%

RUH with
Propagation

17% 32% 41% 71%

Table 6. Performance and accuracy gain of Constant

deciding whether collecting the extra information, which
requires effort in grid-like systems, is worthwhile.

The Constant predictor (defined in section 4) using
a constant of one second, provides a very surprising
result. Although it uses no information to make
predictions – not the job’s user estimate, not past jobs,
not other attributes of the job – it succeeds to match the
performance of RUH in the wait time and absolute
error metrics, and significantly outperform EASY in
the two other metrics. Note that the accuracy is
achieved here by first guessing one second, and
gradually increasing the prediction as the job runs
longer. The initial low guess enables to backfill any
job, regardless of its attributes – and the algorithm
indeed backfills on average 22% more jobs than EASY.
However, this is not done at the expense of long jobs
(since all jobs have an equal chance to backfill). Also,
the gradual ascent in prediction during runtime
maintains a small gap between a job’s runtime and its
reserved shadow time, which helps in maintaining
fairness as well.

Constant values higher than 1 second produce
worse results, which become far worse as the constant
increases. This happens because the scheduler can’t
differentiate between short and long waiting jobs (since
all jobs have the same initial prediction), and it’s
harder to backfill waiting jobs, since they are longer and
thus require longer shadow times to be able to backfill.

The algorithms in the previous two sections also fit
a mixed situation, in which some jobs have full
historical data while others do not (as in a grid setting).
However, this was not simulated, due to the lack of a
relevant workload.

8. Summary
This paper makes three contributions. First, it

expands the current knowledge on runtime prediction
of parallel jobs, by introducing the concept of user
sessions and illustrating its effectiveness. The session
concept is shown to be valuable in both the full
information case and the estimation-less case.

Second, this paper addresses the issues of
estimation-less and information-less runtime prediction,
presenting and evaluating predictors for both cases. In
addition to being useful by themselves, these predictors
help in appraising the potential benefit in the extra
information. This is an interesting question since this
potential benefit must be weighted against the effort
that is required to collect the information – either from
users, or from a grid’s infrastructure.

Third, this paper presents a complete scheduling
framework for the use and evaluation of predictors,
targeted towards the most popular parallel computer
architecture in use today. This framework can be used
either by researchers, to evaluate other predictors under
the same standardized interface and metrics set, or by
practitioners, as a complete and practical scheduling
solution that can be used to improve the bottom-line
performance and accuracy of current systems.

9. References

[1] S-H. Chiang, A. Arpaci-Dusseau, and M. K. Vernon,

“The impact of more accurate requested runtimes on
production job scheduling performance”. In Job
Scheduling Strategies for Parallel Processing, LNCS
vol. 2537, pp. 103-127, 2002.

[2] A. B. Downey, “Predicting queue times on space-
sharing parallel computers”. In 11th Intl. Parallel
Processing Symp., pp. 209.218, Apr 1997.

[3] Y. Etsion and D. Tsafrir, "A Short Survey of
Commercial Cluster Batch Schedulers". Technical
Report 2005-13, School of Computer Science and
Engineering, Hebrew University of Jerusalem, May 2005.

[4] R. Gibbons, “A historical application profiler for use by
parallel schedulers”. In Job Scheduling Strategies for
Parallel Processing, LNCS vol. 1291, pp. 58.77, 1997.

[5] D. Jackson, Q. Snell, and M. J. Clement, “Core
algorithms of the Maui scheduler”. In Job Scheduling
Strategies for Parallel Processing ‘01, pp. 87–102, 2001.

[6] J. P. Jones and B. Nitzberg, “Scheduling for parallel
supercomputing: a historical perspective of achievable
utilization”. Job Scheduling Strategies for Parallel
Processing ‘99, LNCS vol. 1659, pp. 1-16.

[7] N. H. Kapadia, J. A. B. Fortes, and C. E. Brodley.
Predictive application-performance modeling in a
computational grid environment. In IEEE International
Symposium for High Performance Distributed
Computing (HPDC), 1999.

[8] C. B. Lee, Y. Schwartzman, J. Hardy, and A. Snavely,
“Are user runtime estimates inherently inaccurate?”. In
Job Scheduling Strategies for Parallel Processing, 2004.

[9] Hui Li, D. Groep, J. Templon, and L. Wolters, “Predicting
Job Start Times on Clusters”. In proceedings of 4th
IEEE/ACM International Symposium on Cluster
Computing and the Grid (CCGrid2004), April 2004.

[10] A. W. Mu'alem and D. G. Feitelson, “Utilization,
predictability, workloads, and user runtime estimates in
scheduling the IBM SP2 with backfilling”. IEEE Trans.
Parallel & Dist. Syst. 12(6), pp. 529-543, 2001.

[11] The Parallel Workloads Archive,
http://www.cs.huji.ac.il/labs/parallel/workload

[12] J. Skovira, W. Chan, H. Zhoi, and D. Lifka, “The EASY
– LoadLeveler API project”. In Job Scheduling Strategies
for Parallel Processing, LNCS vol. 1162, pp. 41-47, 1996.

[13] W. Smith, I. Foster, and V. Taylor, “Scheduling with
advanced reservations”. In 14th Intl. Parallel &
Distributed Processing Symp., pp. 127-132, May 2000.

[14] W. Smith, V. Taylor, and I. Foster, “Using run-time
predictions to estimate queue wait times and improve
scheduler performance”. In JSSPP 1999, LNCS vol.
1659, pp. 202-219, 1999.

[15] D. Tsafrir, Y. Etsion, and D. G. Feitelson, “Backfilling
Using Runtime Predictions Rather Than User Estimates”.
TR 2005-5, School of CS and Engineering, Hebrew
University of Jerusalem, Feb 2005.

[16] D. Tsafrir, Y. Etsion and D. G. Feitelson, "Modeling
User Runtime Estimates". In the 11th Workshop on Job
Scheduling Strategies for Parallel Processing 2005,
LNCS Vol.3834, 2005.

[17] Y. Zhang, H. Franke, J. E. Moreira and A.
Sivasubramaniam, "An Integrated Approach to Parallel
Scheduling Using Gang-Scheduling, Backfilling, and
Migration". In Job Scheduling Strategies for Parallel
Processing ’01, pp 133-158, 2001.

[18] J. Zilber, O. Amit and D. Talby, "What is Worth
Learning from Parallel Workloads? A User and Session
Based Analysis". In International Supercomputing
Conference 2005 (ICS '05), June 2005.

[19] D. Zotkin and P. J. Keleher, “Job-length estimation and
performance in backfilling schedulers.. In 8th Intl. Symp.
High Performance Distributed Computing, Aug 1999.

