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Abstract 
 

The default setting of most production parallel job 
schedulers is FCFS with backfilling. Under this setting, 
users must supply job runtime estimates, which are 
known as being highly inaccurate and inferior to 
system generated predictions. Recent research 
revealed how to utilize system predictions for 
backfilling, and this potential performance gain 
motivates searching for better prediction techniques. 
We present three prediction techniques using 
decreasing levels of information as is suitable for the 
situation at hand. The first is based on "user sessions": 
continuous temporal periods of per-user work. This 
algorithm exploits the entire long-term historical data 
of the workload, along with user runtime estimates. 
The second is "estimation-less", that is, uses historical 
data only, relieving users from the annoying need to 
supply estimates. The third is completely "information-
less" and is suitable for cases in which neither 
historical information nor estimates are available, as 
happens in some grid environments. We evaluate the 
algorithms by simulating real data from production 
systems. We find all of them to be successful in terms of 
both accuracy and performance.  
 

1. Introduction 
The scheduler is a key component in determining 

the overall performance of a parallel system. Improving 
it can have a dramatic visible effect on a system's 
usability. The most dominant parallel scheduling 
algorithm to date [3] is EASY, that is, FCFS (First-
Come First-Served) with backfilling. Backfilling is an 
optimization that allows small jobs to execute ahead of 
their time provided they do not delay the first queued 
job [12]. This simple optimization is known to be 
extremely effective: it dramatically improves utilization 
[6] and yields performance which is comparable to that 
of more sophisticated algorithms that utilize preemption 
and migration [17]. 

      Upon submittal, backfilling mandates users to 
estimate how long their jobs will run and bases its 
scheduling decisions on this information. It is well 
known that user estimates are highly inaccurate [8, 10, 
16] and that it's possible for system-generated 
predictions that are based on users history to do a far 
better job [4, 9, 10, 14]. Nevertheless, system predictions 
were never incorporated into production backfilling 
schedulers due to two reasons: First, several studies 
have shown that making user estimates even less 
accurate, for example by doubling them, actually 
improves performance [10, 19]. And second, there was 
no clear way of handling the case of job runtimes that 
exceed system-generated predictions. 

In a recent study [15] we have managed to 
overcome the technical difficulty presented by too-
short predictions, which made it possible to incorporate 
predictions within backfilling schedulers. We have also 
shown that doubling of estimates improves 
performance because it implicitly nudges the system to 
favor shorter and smaller jobs at the expense of longer 
and bigger jobs, effectively trading off fairness for 
performance. We have further shown that both 
performance and fairness can benefit if (1) estimates 
are improved instead of doubled, (2) shorter jobs are 
explicitly backfilled first (SJBF), and (3) the base 
algorithm remains FCFS, that is, non-backfilled jobs 
are scheduled by arrival time, and backfilling is 
allowed only when it doesn't interfere. 

The vast popularity of backfilling among 
production systems, the new ability to make backfilling 
utilize system predictions, and the significant resulting 
improvement in accuracy and performance, provide 
strong incentive for improving prediction techniques. 
Additional motivation is provided by the fact that 
improved accuracy is becoming a design goal by itself 
for schedulers, in particular in grid environments which 
utilize co-scheduling [13]. Finally, the ability to use 
system-predictions for backfilling makes it theoretically 
possible (and rather tempting) to eliminate user 
estimates altogether. This is highly desirable as it 
simplifies job submittal, and rids users from an annoying 
task which they perform poorly [8]. 



Considering the motivation as presented above, our 
effort in this paper is threefold. We wish to devise three 
prediction algorithms that utilize a decreasing amount 
of information as is suitable for the situation in question: 
1. Session based algorithm. This algorithm uses all 

the information available to traditional backfill 
schedulers, namely accumulated historical data 
about users and the user runtime estimates of 
submitted jobs. It expands the accumulated art [2, 
4, 9, 14], and its novelty is that it is based on user 
sessions � identifying consecutive temporal work 
periods of users and basing the predictions on the 
jobs populating these sessions. 

2. Estimation-less algorithm. The next step we take 
is refining the above algorithm such that it ceases 
using user estimates. Once this is established and 
incorporated into a backfill scheduler, users are 
able to freely submit jobs, without estimating how 
long they will run. Comparing results obtained 
using this predictor relative to the previous one 
reveals the true value of information of user estimates. 

3. Information-less algorithm. This predictor does 
not base its predictions on any past or present 
information. Such a predictor is often required in 
the context of grid, where a local scheduler must 
schedule a remote job. The history of the job’s 
user will usually not be available, since the user’s 
jobs ran on multiple machines, and the available job 
attributes may vary according to the grid’s 
protocols. 

We have embodied these prediction algorithms in a 
backfill scheduler. This combination provides a complete, 
highly practical scheduling solution that improves the 
bottom-line performance of current systems, in addition to 
improved accuracy. We provide empirical measures of 
performance and accuracy. In addition, this solution is 
usable in systems which serve a mix of the above three 
situations – for example, a local system also serving 
some remote requests, or featuring optional user estimate 
– although we do not provide empirical results here, due 
to the lack of a representative workload. 

The rest of this paper is organized as follows. 
After providing necessary background and surveying 
related work (Section 2), we suggest a methodology for 
comparing predictors in terms of accuracy and 
performance (Section 3). Section 4 uses this 
methodology to provide reference on some previously 
suggested prediction algorithms. Sections 5, 6 and 7 
deal with the three predictors noted above, 
respectively. Finally, Section 8 concludes. 

 

2. Background and Motivation 
2.1. Backfilling 

The parallel computers considered in this paper are 
of the most widespread type today, which use variable 
partitioning. Upon submittal, a user specifies the 
number of processors the job requires. The job is then 
placed in a queue until enough resources are available; 
then, it is assigned the processors it needs for its 
exclusive use and runs to completion. As stated earlier, 
most parallel job schedulers today – including IBM’s 
LoadLeveler, Maui [5], Moab and others – use EASY 
as their default settings [3]. The backfilling optimization 
employed by EASY allows jobs to leapfrog over the first 
queued job provided they do not delay it, i.e. run 
beyond the shadow time. This is illustrated in Figure 1. 

 

 

Figure 1: EASY scheduling reduces fragmentation by using 
backfilling. The numbers indicate jobs' arrival order. It 
would be impossible to backfill job 4 had its length been 
more than 2 time units, or else 3 would have been delayed. 
 

2.2. Inaccuracy of User Estimates 
4 

 

The popularity of EASY has enabled empirical 
studies about the quality of user estimates, based on 
accounting logs from multiple installations [11]. These 
show estimates are generally inaccurate [10, 15, 16], as 
reproduced in Figure 2. 

The seemingly promising peak at 100% 
unfortunately reflects jobs that reached their allocated 
time and were then killed by the system. The hump 
near zero reflects jobs that failed on startup. The rest of 
the jobs, that actually ran successfully, have a rather 
flat uniform-like histogram – meaning that for such 
jobs, any level of accuracy is almost equally likely. 

 
 
 
 
 
 
 
 

Figure 2: Accuracy histograms of user runtime 
                  estimates on four production systems 



Thus user estimates are usually poor, probably 
since users find the motivation to overestimate, so that 
jobs will not be killed, much stronger than the 
motivation to provide accurate estimates and enable the 
scheduler to perform better packing. However, a recent 
study [8] indicates users are quite confident of their 
estimates, and probably would not be able to do better. 

2.3. Using Predictors to Improve Performance 
Until recently, motivation for devising runtime 

prediction algorithms and incorporating them into 
production schedulers was limited for two reasons: 
Findings which suggested that accuracy hinders 
performance, instead of improving it; and lack of other 
needs for accuracy. Both of these reasons have been 
recently refuted. 

Several studies [10, 19] have found a surprising 
yet consistent result: EASY performs better if estimates 
are doubled, which means performance is actually 
improved if estimates are made even less accurate.  
This is shown in Figure 3 by bars associated with user 
estimates allegedly suggesting improved accuracy 
negates performance. However, in [15] we have shown 
this argument to be faulty, as is demonstrated by bars 
associated with actual runtimes in Figure 3. Indeed, 
doubling improves performance. But this argument can 
be applied with far greater success if the initial 
estimates are better, as it is evident that doubling of 
perfect estimates outperforms the doubling of user 
estimates. It therefore reasonable to expect, and was 
verified in [15], that doubling of high quality system 
predictions will have a similar effect.  

Doubling improves performance by creating a 
dynamics in which the first queued job is delayed 
beyond its designated start-time due to shorter jobs that 
are implicitly prioritized. This effect can be partially 
emulated without this delay, if instead of doubling, 
shorter jobs are explicitly backfilled first: Shortest-Job-
Backfilled-First scheduling (SJBF) [15]. 

In addition to being inaccurate, estimates embody 
one additional characteristic that is particularly harmful 
for backfilling performance: they are inherently modal 
[16]. Users tend to choose "round" values – for 
example, one hour – as estimates, resulting in 90% of 
the jobs repeatedly using the same 20 values. Such 
modality significantly limits the scheduler's ability to 
exploit existing holes in the schedule. Most notable is 
the maximal allowed value which is always very 
popular, despite the fact that jobs which use it are 
usually short. For example, in the CTC trace roughly a 
quarter of the jobs used this value. Naturally, such jobs 
will never be backfilled, hindering overall performance. 

Figure 3: Performance of EASY under different runtime 
predictions: user estimates, actual runtimes, and both doubled 

2.4. Using Predictors to Improve Accuracy 
In addition for the motivation to improve 

performance, two other developments raise the 
requirement for accurate predictions of parallel jobs. 
The first is advanced reservation for grid co-allocation, 
shown to considerably benefit from better accuracy 
[13]. Knowing in advance when remote processors will 
be available is crucial for making reservations work. 

The second is scheduling of moldable jobs that can 
utilize any number of processors [2, 14]. For such jobs 
the goal of the scheduler is to minimize response time, 
thus it must decide whether it's preferable to start 
running a job on the processors that are available now, 
or wait for more processors to accumulate. A good 
prediction of how long current jobs are expected to run 
is obviously crucial to making the correct decision. 

2.5. Related Work 

Several runtime prediction schemes have been 
published. Smith et al. suggested utilizing genetic 
algorithms to dynamically determine the set of jobs 
according to which predictions will be made [14]. 
Gibbons used fixed set criteria, but his predictor 
interface was complicated by varying confidence levels 
[4]. Kapadia et al. used instance based learning [7]. All 
these predictors are much more complex than the basic 
EASY scheduler; in contrast, in [15] we've shown that 
a simple prediction of averaging the runtime of the last 
two jobs by the same user is extremely successful. 

In this paper we also propose that predictors will 
obey a standardized interface (Listing 1). This will 
allow schedulers to easily incorporate any previously 
implemented predictors, regardless of their complexity. 
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3.  Predictors Comparison Framework 
This section defines our methodological 

framework for comparing prediction algorithms: The 
scheduling algorithm which hosts predictors, the 
metrics used to measure performance and accuracy, 
and the empirical data set. 

3.1. Standardized Predictor Interface 
A scheduler is an event-based program, where 

events are job arrival or termination. Upon arrival, the 
scheduler is informed of the number of processors the 
job needs and its user estimated runtime. It can then 
simulate the job’s execution or place it in a queue. 
Upon termination, the scheduler is notified and can 
schedule other queued jobs on free processors. 

A runtime prediction algorithm is also an event-
based program, used internally by a scheduler to handle 
four events as specified in Listing 1.  

struct Prediction { Job job, int prediction } 
list<Prediction> onJobArrival ( Job job ) 
list<Prediction> onJobStart ( Job job ) 
list<Prediction> onJobTermination ( Job job ) 
list<Prediction> onJobDeadlineMissed ( Job job ) 

Listing 1: An abstract predictor standardized interface 
In each of these events, more information is 

available to the predictor, so it may decide to adjust 
the predictions of zero or more jobs (whether waiting 
or running). It therefore returns a list of updated 
predictions for these jobs, which may be empty. The 
only constraints are that a prediction must be given for 
a job on its arrival, must be given when a job has 
missed its deadline (meaning that it's still running, but 
its runtime has just exceeded its current prediction), 
and must be bigger than the job’s current runtime, if it 
already began to run.  

The simplest predictor would return a job's 
estimate upon its arrival and an empty list upon its start 
and termination (there will be no deadline misses, 
because a job is killed once its user estimate is 
reached). Note that this is actually plain EASY 
scheduling. A scheduler that uses the above interface 
would be able to quickly replace and utilize any new 
predictor that obeys this interface, as are all predictors 
appearing in this paper. 

3.2. Measuring Performance 
The effect of a given predictor on a given system is 

highly dependent on the scheduler being used. 
Selecting the scheduler used for empirical experiments 
in this paper was based on the following criteria: 

1. The scheduler’s performance should improve 
when the predictor’s accuracy is improved. 

2. The scheduler should maintain accepted fairness 
norms, and not be subject to starvation. 

3. The scheduler should be practical – easy to 
implement and integrate in current systems. 
Evidence shows [15] that a number of schedulers 

abide these criteria. These schedulers include those 
which employ the “doubling optimization", since as 
discussed earlier choosing whether to double the 
prediction or not is a property of the scheduler, not the 
predictor. Out of the possible reasonable choices, we 
have chosen to use Shortest-Job-Backfilled-First (SJBF) 
as the base scheduler. It is identical to EASY, except for 
three places: 
1. Use predictions instead of user estimates to 

compute the shadow time. 
2. Use predictions instead of estimates to test if a job 

terminates before the shadow time. 
3. Backfill jobs in order of ascending predictions 

(shortest job first), instead of ascending arrival 
time (first come first serve). 
SJBF was chosen for three reasons. First, it 

explicitly prioritizes shorter jobs, which makes the 
benefit of improved accuracy most pronounced 
[1,4,7,14,15,19]. Second, it does so without scarifying 
fairness. And third, it is very easy to implement in 
practice, particularly in EASY or Maui based installations. 

Performance is measured in terms of average wait 
time of jobs and bounded slowdown [10], as is 
customary in this domain. 

3.3. Measuring Accuracy 
Defining and measuring the accuracy of 

predictions is non-trivial for several reasons. First, 
since a prediction may be lower than a job’s actual 
runtime, it may have to be changed during its execution 
– so one job can have several different predictions during 
its lifetime. Second, since most prediction algorithms 
rely on history, they must rely on the list of terminated 
and running jobs – which means that their accuracy 
also depends on the scheduler being used, in addition 
to the workload. Third, different metrics may be 
sensitive to different aspects of accuracy, as is the case 
in performance metrics. For example, the slowdown 
and wait time metrics don’t always agree, as the former 
is dominated by short jobs and the latter by long ones. 
This is why more than one metric is often required. 

We therefore define and measure two accuracy 
metrics: absolute inaccuracy, defined as the absolute 
difference between the prediction and the actual 



runtime (analogous to wait-time and similarly desired 
to be as small as possible), and relative accuracy, 
defined as the ratio of runtime to prediction (analogous 
to slowdown). When analyzing a full log, we consider 
the averages of these metrics, which means relative 
accuracy is dominated by short jobs, while absolute 
inaccuracy is dominated by large prediction errors. To 
avoid under- and over-predictions canceling each other 
out when relative accuracy is averaged, we always set 
the smaller value to be the numerator in the ratio, and 
so, relative accuracy is always within 0% to 100%. 
Equation 1 formally defines the two metrics. 
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Equation 1.  Accuracy metrics. R stands for the job's 
actual runtime and P for its associated prediction. 

These definitions only work for jobs that have a 
single prediction throughout their lifetime. In the 
frequent case of under-predictions (and upon any other 
prediction update initiated by the predictor), jobs’ 
predictions change. We therefore use its average 
weighted accuracy. Weights are determined according 
to the durations in which each prediction was in effect. 
Formally, if T0 and TN are a job’s submission and 
termination time, and Ai is its accuracy (absolute or 
relative) from time Ti-1 to Ti (where Ti � Ti+1), then its 
average weighted accuracy is: 
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Equation 2.  Accuracy in the face of multiple predictions.  

3.4. The Dataset 
The dataset used in this study consists of four logs 

from the Parallel Workloads Archive [11]. Together, 
the logs constitute over 400,000 jobs and six years of 
real user activity, under different load conditions in 
different sites (Table 1). All logs have been studied 
before, and undergone extensive cleaning from errors, 
flurries and other minor issues. They are widely 
regarded as representative of parallel computer 
workloads, including their user estimates [16]. 

 

Abbrev. Location Nodes Jobs Weeks Utilization 
SDSP2 San Diego SC 128 59,725 105.2 84% 

CTC Cornell 
Theory Center 128 77,222 48.5 56% 

KTH Swedish Inst. 
of Technology 100 28,490 48.6 69% 

BLUE San Diego SC 
Blue Horizon 1,152 243,314 140.1 76% 

Table 1: Parallel logs used in this study. 

4. Reference Predictors 
Now that our methodology is in place, we begin by 

studying four existing prediction algorithms, whose 
metrics will be used as reference from now on. The 
first algorithm is the perfect predictor, which guesses 
the actual runtime. This is a theoretical, optimal 
predictor, since the actual runtime is not known in 
advance. The second predictor is the constant predictor: 
predict the same, constant runtime for all jobs. This 
predictor is a reference to what can be achieved with no 
information, in contrast to Perfect which has full 
information. The third predictor is the estimate predictor: 
use the user estimate as the prediction. Formally: 

 

PERFECT Predictor:  OnJobArrival return <job, job.runtime> 
CONSTANT Predictor: OnJobArrival return <job, Constant> 
ESTIMATE Predictor: OnJobArrival return <job, job.estimate> 

Listing 2. Reference Predictors 

Note that SJBF with the Estimate Predictor is 
different from the original EASY in two aspects. First, 
it backfills jobs by order of ascending estimates, 
instead of ascending arrival time (FCFS). Second, it 
updates its prediction on deadlines misses – events in 
which the job’s runtime exceeds its prediction. This 
can happen if a job’s runtime exceeds its estimate 
(which happens in practice in rare cases), and is 
handled, as suggested in [15], by gradually increasing 
the prediction by predefined increasing values. This is 
also the strategy used in the Constant Predictor, if the 
runtime exceeds the constant. All other predictors in 
this paper use the following strategy: If a deadline is 
missed and the current prediction is smaller than the 
user estimate, then raise it to be equal to the user estimate; 
else, raise it by the predefined gradual increments. 

The fourth predictor we will compare ourselves to 
is the Recent User History Predictor, presented in [15] 
and named EASY++ there. To the best of our 
knowledge, it is the best performing scheduler/predictor 
combination to date abiding our criteria from section 
3.2. It is based on SJBF as well, and predicts runtimes 
based on a simple rule: A job’s prediction is the 
median of the runtimes of the three last jobs of the 
same user. 

OnJobArrival: 
if there exist at least three terminated jobs of job’s user then 
    return [job, median of last three terminated jobs of job’s user] 
else  
    return [job, job.estimate] 

Listing 3. Recent User History (RUH) Predictor 

 



The RUH Predictor can be configured by several 
parameters, underlined in the above pseudo-code: how 
many past jobs to consider, which metric to use on 
them, should running or only terminated jobs be 
considered, and how to handle the first jobs of a new 
user. We have simulated it under its best published 
parameter configuration1, in two variants – with and 
without propagation. Propagation is an optional 
optimization, which forwards new information on a job 
– specifically, its actual runtime when it terminates or 
its updated prediction on a deadline miss event – to the 
rest of the waiting and running jobs of the same user. 
The predictions of these jobs are then recomputed 
based on the updated information. 

Table 2 and Figure 4 compare the reference 
predictors. As expected, EASY is substantially inferior 
to SJBF, even under the Estimate predictor. RUH 
behaves almost the same with and without propagation, 
and improves both performance and accuracy further, 
up to about two thirds of the potential gain, as assessed 
by the results of the Perfect predictor. 
                                                           
1 An improved configuration of RUH yielding better results 
was found since publication – see [15] for details. 

 

Improvement over EASY, 
Average over all logs: 

 
Predictor: 

Wait 
Time 

Bounded 
Slowdown 

Absolute 
Inaccuracy 

Relative 
Accuracy 

Perfect 22% 47% 100% 176% 
Estimate 11% 22% 0% 0% 
RUH without 
Propagation 

18% 32% 40% 69% 

RUH with 
Propagation 

17% 32% 41% 71% 

Table 2. Performance and accuracy gain of SJBF 
with reference predictors over EASY 

5. Session-Based Prediction 
5.1. Rationale 
It is well known that human users typically work in 
sessions – periods of intense, repetitive work. A recent 
study [18] formalized this notion, and identified five 
stable clusters of sessions in parallel workloads. It was 
also found that in four of the session clusters, consisting 
of over 95% of the observed sessions, the variance 
between jobs in the session is very small – a median of 
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 Figure 4: Performance and Accuracy Comparison of Reference Predictors 



CTC, 20 Sep 1996, User #289 BLUE, 21 Apr 2001, User #315 

Arrival Size Est. Exe# RT 

19:49:20 16 300 3012 91 

19:52:32 12 300 3012 67 

19:57:45 12 300 3012 348 

19:58:33 16 300 3012 342 

20:05:25 16 300 3012 105 

20:08:17 16 300 3012 87 

20:10:07 200 300 3032 332 

20:15:54 100 300 3033 314 

20:22:15 200 300 3033 389 

20:31:34 200 1800 3033 168 

20:31:45 200 1800 3033 352 

20:33:25 200 1800 3033 348  

Arrival Size Est Exe# RT 

04:29:56 8 30600 N/A 31 

04:30:14 8 30600 N/A 28 

04:33:16 8 30600 N/A 31 

04:36:26 8 30600 N/A 28 

04:37:09 8 30600 N/A 43 

04:40:33 8 30600 N/A 33 

04:43:29 8 30600 N/A 29 

04:46:34 8 30600 N/A 29 

04:49:40 8 30600 N/A 28 

04:54:37 8 30600 N/A 28 

04:58:04 8 30600 N/A 30 

05:06:57 8 30600 N/A 28  

Table 3. Two Sample Sessions 

less than two unique runtimes and levels of parallelisms 
within a session. This explains why the Recent User 
History Predictor is successful, but also suggests that 
basing a predictor directly on sessions may be even better. 

Table 3 shows two stereotypical sessions. On the 
right is a session from the BLUE log, in which the user 
repeatedly ran the same job; note how runtimes are 
easy to predict based on history, but on the other hand 
have no correlation to the user estimate. On the left is a 
session from the CTC log, which shows how 
sometimes the user hints about changes in runtime by 
changing the number of processors, the estimate, or the 
executable. Based on these observations, we designed 
the session-based predictor to use both proximity in 
time and similarity in job attributes to decide on which 
jobs a new prediction should be based. 

5.2. Algorithm 
The Session-Based History (SBH) Predictor works 

as follows. It maintains each user’s past jobs 
partitioned by sessions, where two jobs are defined to 
be in the same session if the think time between them 
(the time between the termination of the first one and 
the arrival of the next) is smaller than twenty minutes. 
This threshold is taken from [18], where sensitivity 
analysis showed that it is stable to changes within the 
same order of magnitude. We have run simulations 
using different thresholds, including ones far different 
from 20 minutes, and concluded that other values 
sometimes show comparable performance, but cannot 
be used to obtain consistent superior performance or 
accuracy. These results will not be presented here due 
to lack of space. All simulation results presented here 
use the 20-minutes value. 

In addition, the SBH Predictor requires an ordered 
list of similarity criteria, by which jobs in a session are 
matched to the job for which a prediction is required. 
Each criterion defines whether the number of 
processors (P), the user estimate (E), or the executable 

OnJobArrival (Job job):  

     for each criterion in the similarity criteria list 
          for each of the last three sessions of job’s user, 
          ordered by descending start time 

      if there exists at least one terminated job in session,     
              which matches the current similarity criterion, then 

           return <job, median of all matching jobs in session> 

     // (following line is only reached if no match was found) 
     return <job, job.estimate> 

Listing 4. Session Based History (SBH) Predictor 

(X) should match; the algorithm only uses jobs that 
match the given criterion to generate a prediction. For 
example, if the criteria list is [PEX,PX,EX], then the 
algorithm will first look only for jobs that match the 
new job in parallelism, estimate, and executable; if 
there is no such job in the current session, it will look 
for jobs that match in parallelism and executable; and if 
there is no such job as well, it will look for jobs that 
match in estimate and executable. If no matching job is 
found at all, then the algorithm repeats the search in the 
previous sessions, in descending order. If no matching 
job is found in any session (for example, in the first job 
of a new user, or when a user starts working with a new 
executable), the algorithm resorts to using the user 
estimate as the prediction (Listing 4). 

The algorithm can be configured in several ways, 
which are underlined in the above pseudo-code. We 
found two parameters to be the most influential. The first 
is the similarity criteria list, since it defines the balance 
between predicting by exact matches, and not being able 
to predict at all (when the criteria is too strict). The 
second is the order of the algorithm’s two loops. The 
algorithm as explained above and defined in Listing 4 
uses “Depth-First Search” (DFS): Its first priority is to 
find an exact match to the current criterion, at the 
expense of relying on the farther past. For example, if the 
setting is [PEX,PX,EX], then this algorithm will prefer to 
predict based on a job that matches in parallelism, 
estimate, and executable three sessions ago, rather than 
predict based on a job that matches only in parallelism 
and executable from the current session. An alternative 
strategy would be “Breadth-First Search”, in which the 
two loops are exchanged, and the algorithm first looks at 
the current session for any match to the similarity criteria 
list, and only searches past sessions if no match is found. 

5.3. Empirical Results 
 

The SBH Predictor can be configured in a vast 
number of ways, but most parameters and combinations 
have a marginal effect. Table 4 and Figure 5 compare 
the performance and accuracy of RUH with the two best 
SBH configurations we have found. Note that the 
numbers indicate improvement over the best RUH 



configuration. This translates to a 24% gain in wait 
time and 47%-53% in absolute inaccuracy over the 
currently deployed EASY-based schedulers. 

After analyzing thousands of simulations, we 
uncovered several other interesting properties of the 
session-based predictor, summarized in the next 
paragraphs. These insights may be applicable to the 
design of other predictors, as well as for session-based 
analysis of parallel workloads for other reasons. 

Improvement over RUH, 
Average over all logs: 

 
Configuration: 

Wait 
Time 

Bounded 
Slowdown 

Absolute 
Inaccuracy 

Relative 
Accuracy 

Unlimited DFS, 
[PE,P,E,*], 
Propagation 

5% 4% 5% 2% 

Unlimited DFS, 
[E,P,X], 
Propagation 

4% 8% 9% 3% 

Table 4. Best SBH configurations and their gain over RUH 

Searching in sessions far back in history is useful. 
In contract to the RUH Predictor, SBH prediction 
requires a users’ entire history to work optimally. 
Limiting the algorithm to look for less than 10 sessions 
back deteriorates performance, and surprisingly, even 
limiting the algorithm to 30 sessions results in 
performance that is 2%-3% worse, in all logs, than that 
of the equivalent unlimited configuration. Only a small 
fraction of a system’s users even have that many 
sessions, so the effect must be caused by better 
understanding of these few extremely active users. 

Depth-First Search is significantly better than 
Breadth-First Search. Over a large set of simulations, 
DFS performed better than the equivalent BFS 
configuration in over 90% of the cases. The average 
gap in favor of DFS, over all four logs, was 5% in 
average wait time and 17% in average absolute error. 
Note that this happens even though we use DFS to 
unlimited depth (not just 3 sessions back). In plain 
words, basing a prediction on an exact match that is 
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Figure 5: Performance and Accuracy Comparison of RUH, SBH and No-Estimate Predictors 

 



five months old is better than basing it on an 
approximate match that is five minutes old. According 
to the previous paragraph, this happens in practice. 

Session-Based Prediction based on proximity in 
time alone in not enough. Using similarity criteria 
such as [*] (match any job) or [PEX,*] resulted in 
performance that is even worse than that of RUH. It 
seems that separating sessions by means of the think 
time between jobs alone is not enough to distinguish 
between different activities of the user, at the level of 
precision that is required for accurate runtime prediction. 

Generalizing the above three paragraphs, we safely 
conclude that exact similarity is more important than 
proximity in time for runtime prediction. Thanks to this 
principle, the session-based predictor is the first to 
successfully use to full history of a parallel workload. 

Propagation is generally better than non-
propagation. Enabling propagation means taking 
advantage new information sooner, and indeed using 
this optimization was preferable in 75% of the cases, 
resulting in an average improvement (over all four 
logs) of 10% in average wait time and 6% in average 
absolute error. 

6. Estimation-Less Prediction 
The Session-Based Predictor uses all the available 

information about a job to predict its runtime. In this 
section we present predictors, session-based as well, 
for the case in which user estimates are not available. 
This can be used to relieve users from the need to supply 
estimates, as well as in other situations where estimates 
are simply not available, or not available for all jobs. 

Session-Based Predictors enable us to build the 
highest performing predictors to date that don’t use 
user estimates, since SBH relies on estimates less than 
previous algorithms. By measuring the performance 
and accuracy loss caused by discarding estimates, we 
enable making an informed decision. Building a No-
Estimate SBH Predictor requires replacing the estimates 
in the three places where they are potentially used: 

1. As a default prediction in case no matching past job 
is found (the last line in Listing 4 is reached). This 
happens in slightly less than 1% of the jobs in the 
predictors given in this section. The estimate can be 
replaced here by always predicting 1 second (i.e. 
applying the Constant predictor). 

2. As a strategy for dealing with missed deadlines, as 
long as the job’s current runtime is smaller than its 
estimate. The way to replace the estimate here (as 
we found empirically) is by multiplying the current 
prediction by a factor of 10 on every miss. 

Configuration: Improvement over RUH, 
Average over all logs: 

 Wait 
Time 

Bounded 
Slowdown 

Absolute 
Inaccuracy 

Relative 
Accuracy 

Balanced, 
DFS, 
[PX,P,X,*] 

-5% -4% -13% 1% 

Unbalanced, 
DFS, 
[PX,P,X,*] 

-8% -11% N/A 1% 

Table 5. Best No-Estimate SBH Configurations and Their 
Performance Relative to RUH 

3. As a similarity criterion for matching past jobs to the 
predicted job. Obviously, Estimates cannot be used in 
similarity criteria lists if they are not available. 
Table 5 and Figure 5 present two high-performing 

SBH variants that do not use estimates. Both variants 
don’t use propagation, and using it has a negligible 
effect. The “Balanced” variant stops the exponential 
growth of predictions after it hits a certain (high) 
threshold, while the “Unbalanced” variant does not. 
Not stopping the exponential growth results in better 
performance in three of the four logs. However, this 
comes at the expense of an out-of-bounds absolute 
error, and also at some cost to fairness, since the high 
over-estimations that are inevitably created enable 
more backfilling of short jobs (that is, predicted-to-be-
short jobs), at the expense of long ones. 

The empirical results show that the best 
configuration of SBH without user estimate is still not 
as good as RUH. Compared to the best SBH predictor 
with user estimates, the average wait time is about 10% 
worse, and the average absolute inaccuracy is 22% 
higher. So the bottom line is, as expected, that 
requiring users to indicate estimates for submitted jobs 
is still useful when predictors are used. On the other 
hand, if user estimates are not available, the above 
predictors are the best alternative to date. 

7. Information-Less Prediction 
The problem of runtime prediction with no 

information is highly practical in grids and other 
distributed co-scheduled machines, where a single user 
session may be executed on several separate 
computers, and so the history of an incoming job may 
not be available to a local scheduler. The remote 
scheduling protocol may not even transfer original user 
identifiers or estimates, let alone complete histories. 

Information-less predictors are also interesting since 
they help to assess the value of information that the more 
informed predictors enjoy, in terms of the difference in 
performance and accuracy between them. This can aid in  

 



Improvement over EASY, 
Average over all logs: 

 
Predictor: 

Wait 
Time 

Bounded 
Slowdown 

Absolute 
Inaccuracy 

Relative 
Accuracy 

Constant 
1 Second 

16% 13% 41% 37% 

RUH with 
Propagation 

17% 32% 41% 71% 

Table 6. Performance and accuracy gain of Constant 

deciding whether collecting the extra information, which 
requires effort in grid-like systems, is worthwhile. 

The Constant predictor (defined in section 4) using 
a constant of one second, provides a very surprising 
result. Although it uses no information to make 
predictions – not the job’s user estimate, not past jobs, 
not other attributes of the job – it succeeds to match the 
performance of RUH in the wait time and absolute 
error metrics, and significantly outperform EASY in 
the two other metrics. Note that the accuracy is 
achieved here by first guessing one second, and 
gradually increasing the prediction as the job runs 
longer. The initial low guess enables to backfill any 
job, regardless of its attributes – and the algorithm 
indeed backfills on average 22% more jobs than EASY. 
However, this is not done at the expense of long jobs 
(since all jobs have an equal chance to backfill). Also, 
the gradual ascent in prediction during runtime 
maintains a small gap between a job’s runtime and its 
reserved shadow time, which helps in maintaining 
fairness as well. 

Constant values higher than 1 second produce 
worse results, which become far worse as the constant 
increases. This happens because the scheduler can’t 
differentiate between short and long waiting jobs (since 
all jobs have the same initial prediction), and it’s 
harder to backfill waiting jobs, since they are longer and 
thus require longer shadow times to be able to backfill. 

The algorithms in the previous two sections also fit 
a mixed situation, in which some jobs have full 
historical data while others do not (as in a grid setting). 
However, this was not simulated, due to the lack of a 
relevant workload. 

8. Summary 
This paper makes three contributions. First, it 

expands the current knowledge on runtime prediction 
of parallel jobs, by introducing the concept of user 
sessions and illustrating its effectiveness. The session 
concept is shown to be valuable in both the full 
information case and the estimation-less case. 

Second, this paper addresses the issues of 
estimation-less and information-less runtime prediction, 
presenting and evaluating predictors for both cases. In 
addition to being useful by themselves, these predictors 
help in appraising the potential benefit in the extra 
information. This is an interesting question since this 
potential benefit must be weighted against the effort 
that is required to collect the information – either from 
users, or from a grid’s infrastructure. 

Third, this paper presents a complete scheduling 
framework for the use and evaluation of predictors, 
targeted towards the most popular parallel computer 
architecture in use today. This framework can be used 
either by researchers, to evaluate other predictors under 
the same standardized interface and metrics set, or by 
practitioners, as a complete and practical scheduling 
solution that can be used to improve the bottom-line 
performance and accuracy of current systems. 
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