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ABSTRACT 

Learning useful and predictable features from past 
workloads and exploiting them well is a major source of 
improvement in many operating system problems. We 
review known parallel workload features, and argue that 
the correct approach for future on-line algorithm design as 
well as workload modeling is user- and session-based 
modeling, instead of analyzing jobs directly as done today. 
We then provide statistically sound answers to two basic 
questions: Which user and session features are central 
enough to be potentially useful, answered using Principal 
Component Analysis, and which user and session classes 
exist and how they can be identified on-line, answered 
using K-means clustering. We identify variable sets that 
explain over 80% of the variance between sessions and 
between users, and also identify five stable session classes 
(clusters) and four stable user classes. Our analysis is 
based on logs from seven different parallel 
supercomputers, spanning over 87 months, which are 
analyzed together to ensure that results are location- and 
architecture-neutral. 

Categories and Subject Descriptors 
C.4 [Operating Systems]: Performance – modeling and 

prediction; D.4.7 [Operating Systems]: Organization and Design 
– Distributed systems;   

General Terms 
Measurement, Performance, Human Factors. 

Keywords 
Workload modeling, User- and session-based modeling, HPC, 

PCA, Clustering, User sessions' classification. 

 

1. INTRODUCTION 
 

Understanding the expected workload that a system will face 
is crucial to making the right decisions when designing and 
configuring it. Workload analysis for parallel computers has 
therefore attracted a large body of research, divided to two main 
flavors. The first is the construction of workload models 
[4,7,10,12,14], which are statistical models based on observations 
from real-world traces. These models can be used to create 
synthetic workloads, in order to compare resource management 
algorithms under different conditions (load or machine size, for 
example) or to gain general insights. The second flavor exploits 
features of parallel workloads directly, either by designing 
heuristic algorithms that exploit discovered workload features 
[2,17] or by designing adaptive or prediction-based algorithms 
that learn the workload as they go [5,6, 20,21]. Adaptive, learning 
and prediction-based algorithms always include a lot of prior 
knowledge about the workload – which parameters should be 
adaptive? What cues are used to change them? Which variables 
should be used to learn from history? – and in many cases their 
main innovation is discovering a particular workload phenomenon 
and modeling it well. 

In many areas, the basic resource management policies are 
well-known and understood – and the major performance 
advances in the past few years are the result of tuning the 
algorithms to exploit workload features found to repeat in historic 
traces. Examples can be found in scheduling [10,17,20], task 
allocation [2,13], management of a computational grid [13], load 
balancing [23], soft real-time systems [6], wide-area data 
replication management [21] and others. All of these areas can 
potentially benefit from this work. 

The goal of this paper is to provide new information, 
discovered by means of sound statistical techniques, than can 
substantially benefit both worlds – synthetic workload modeling, 
and on-line resource management algorithms. We do so by 
answering two very basic questions. 

The first is: which variables should be modeled? Or in an 
algorithm-designer’s words: which features of parallel workloads 
are important enough to affect performance? As the next section 
shows, first-generation models focused on modeling the most 
visible workload attributes, such as runtime and parallelism, but 
neglected other vital features such as the temporal structure of the 
workload, user behavior and so forth.  

But the question is deeper: after we found these several 
previously unmodeled features, how do we know that this is 
“enough”? In other words, how do we know that a given set of 
variables explains most of the variance found in parallel 
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workloads? To measure exactly that, we use Principal 
Components Analysis (PCA): a statistical technique used to find 
the important differentiating variables in a given dataset and 
measure the proportion of information they represent out of the 
total variance in the data. We also provide a concrete set of 
variables, which explains most of the variance between users and 
sessions in parallel workloads. 

The second question that we address is:  
what should be modeled? Our answer is that in contrast to 
previous works, which modeled parallel jobs directly, we argue 
that users should be modeled first, then sessions, and only then 
jobs. The next section provides the many arguments in favor of 
taking this approach. This is again aimed both at synthetic models 
– which we believe should directly model users and sessions – as 
well as resource management algorithms – which can benefit more 
from using historical knowledge of users and sessions, than of 
“unattached” jobs. 

In order to enable this, we analyzed a set of production 
workload traces, and used clustering to identify four classes of 
users and five classes of sessions in parallel workloads. Since we 
mixed several traces before clustering, this classification is both 
architecture- and location-neutral – and as can be observed, is 
mostly focused on universal human traits, such as work in 
sessions and the daily cycle. In addition, we provide the observed 
distributions of both user classes and session classes – so that 
together with the concrete set of variables to model given by the 
PCA analysis, this paper provides most of the input required to 
build a complete user-based workload model. 

This paper is structured as follows. The next section reviews 
existing models, summarizes recent parallel workload features that 
they lack, and argues why a layered user-session-job model is the 
best way to embody them. Section 3 presents our dataset. Sections 
4 and 5 contain the analysis of sessions, sections 5 and 6 contain 
the analysis of users, and section 7 summarizes a list of insights, 
applicable for both workload modeling and algorithm design. 

 

2. THE CASE FOR USERS AND SESSIONS 
 

2.1. Review of Current Workload Models 
 

When reviewing what research has learned from parallel 
computer workloads so far, the obvious place to start is existing 
models. Several synthetic parallel workload models have been 
proposed to date; all directly model jobs. They differentiate one 
another by the method used for distribution fitting, and sometimes 
by the modeled parameters of the workload as well. 

The first model was proposed by Feitelson in '96 with 
modifications in ’97 [10]. This model is based on observations 
from several workload logs. Its main features are the hand-tailored 
distribution of job sizes (i.e. the number of processors used by 
each job), which emphasizes small jobs and powers of two, the 
correlation between job size and running time, and the repetition 
of job executions. In principle such repetitions should reflect 
feedback from the scheduler, as jobs are assumed to be re-
submitted only after the previous execution terminates. 

The model by Downey is based mainly on an analysis of the 
SDSC Paragon log [7]. It uses a novel log-uniform distribution to 
model service times (that is, the total computation time across all 
nodes) and average parallelism. This is supposed to be used to 
derive the actual runtime based on the number of processors 
allocated by the scheduler. In a rigid variable partitioning 
machine, the average parallelism can be used as the number of 

processors, and the service time can be divided by this number to 
derive the runtime. 

Jann's model is based on a careful analysis of the CTC SP2 
workload [12]. Both the running time and inter-arrival times are 
modeled using hyper Erlang distributions of common order, 
where the parameters for each range of number of processors are 
derived by matching the first three moments of the distribution. 
The same framework was used again to match parameters for the 
ASCI Blue Pacific computer. 

The model by Lublin [14] is based on a statistical analysis of 
four logs. It includes a model of the number of processors used 
which emphasizes powers of two, a model of running times that 
correlates with the number of processors used by each job, and a 
model of inter-arrival times. While superficially similar to the 
Feitelson models, Lublin based the choice of distributions and 
their parameters on better statistical procedures in order to achieve 
a better representation of the original data. 

The last and most recent model is by Cirne and Berman [4]. 
This is a comprehensive model for generating moldable jobs, 
based on the analysis of four SP/2 logs. It is composed of two 
parts: A model for generating a stream of rigid jobs; and a model 
for turning rigid jobs into moldable ones. The model also 
addresses the issues of requested times for a job and job 
cancellations. The model takes into account workday cycles, and 
its inter-arrivals pattern can be adjusted to match each of the logs 
used to build it. 

A comparative study [18] has found that when comparing the 

models and production logs together, using only variables that the 

models addressed, then each model models well one or two 

production logs – usually the ones it was based on. 

 

2.2. Review of Unmodeled Workload Features 
 

There are two sources for workload features not yet found in 
models – statistical analysis research and algorithm research. This 
section summarizes what both of them have found to date. 

Self-Similarity. [18] has shown that all of the major 
attributes of parallel workloads, including runtimes, parallelism, 
CPU time and number of jobs, are self-similar in nature. This is a 
statistical property that manifests itself in several mathematically 
equivalent ways: non-convergence of the load even across long 
time scales (weeks or months), variance that drops slowly, i.e. 
according to a power law rather than exponentially (so extreme 
cases are likely to appear), and a long-range dependence between 
jobs. The adaptive scheduler in [17] is motivated by stabilizing the 
quality of service of different months, which is caused by a mix of 
self-similarity and schedulers’ dynamics. 

Locality of Sampling. As defined in [9], this feature 
identifies the fact that while the overall variance in parallel 
workloads is very high, the diversity over short time scales, such 
as one day, is very small: on a typical day, at most several users 
are active, and they run the same jobs over and over again. 
Although not rigorously defined, this property is the basis of 
several prediction-based algorithms [17,20], which exploit the 
fact that the recent past of a user is a very good indicator of the 
(very) near future. 

Daily and Weekly Cycles. Some of the models, particularly 
the newer ones [4,14] do reflect this feature, which is very evident in 
production logs [22]. A recent adaptive algorithm [17] exploits it, 
and shows consistent improved performance if and only if it is in 



sync with one of the two cycles. Older models simply cannot be 
used to assess such algorithms, thus losing their main use. 

Flurries. A flurry [19] is a burst of extremely high activity, 
by a single user and over a short period of time. Flurries exhibit 
activity that is orders of magnitude higher then the norm during their 
lifetime, which usually has a significant effect of the statistics of an 
entire year. Flurries are essentially a kind of outlier sessions, and 
sessions are the only direct way to model them. Their effect on 
resource management algorithms is obvious. 

User History. Prediction-based algorithms, aiming to predict 
job runtimes [5,6,13], communication patterns, load distribution 
across nodes [6,23], data access patterns [21] and so forth, 
normally rely on the history of the job’s user to make predictions. 
A recent scheduling algorithm [20], for example, has shown 
substantial performance gains by combining a new backfilling 
scheme with user-based runtime prediction, that is based on 
averaging the user’s last few jobs (note that locality is used as 
well here). As a result, existing models cannot be used to test this 
new algorithm at all – since none of them outputs the user of 
generated jobs. 

Sessions. Although an intuitive aspect of human use of 
computers [1], sessions have not been reportedly analyzed or used 
so far in parallel resource management algorithms. This paper will 
hopefully open the door to such algorithms, by providing a clear 
definition, distributions and guidelines about what useful 
information can be learned from looking at specific sessions in 
addition to users. We can cautiously say that early measurements 
with improving the backfilling scheduler mentioned above to use 
sessions when predicting runtimes do show improved 
performance. Regardless, as the next section shows, sessions play 
a role in solving other problems as well. 

Some algorithms learn by collecting history on specific 
applications [15]. However, most of the production logs don’t 
include executable information, and its semantics is often unclear 
(use of command-line arguments, different compilations of the 
same program and so forth). Therefore, due to this lack of reliable 
data, we prefer to focus on users at this stage. 

 

2.3. Users and Sessions 
 

Our framework for parallel workload modeling and history-
based algorithm design is multi-scale [3,15], and is based on users 
and sessions. From the modeling point of view, this means that we 
don’t model distributions of jobs, but instead model distributions 
of user classes. For each user class, we model distributions of 
session classes; and for each session class, we model jobs. To 
make things simple, the session classes are identical for all user 
types. In the next section we uncover them independently of user 
types – so the only difference between user types is the frequency 
of each session class. 

At the bottom line, such a model is used to generate a stream 
of synthetic jobs, like the existing models reviewed earlier. But 
from the algorithm-design point of view, its use is very different: 
during the execution of an on-line algorithm, the list of active 
users and (if the time scale is small) the list of active sessions are 
known. Therefore, only the jobs need to be simulated, and since 
intra-session variance is very small, the algorithm has a much 
more precise prediction of its near-future workload, compared to a 
job-based model in which distributions usually have extremely 
high variances. This is the first major advantage of a user-session-
job model. 

Second, such a model is expected to be self-similar. There 
are two ways to synthesize a self-similar time series: directly or by 
aggregation. The direct method produces signals based on a self-
similar distribution, such as fractional Brownian motion or 
fractional ARIMA processes. These processes allow good control 
over the Hurst parameter, but they make it harder to control other 
desirable properties of the workload. The second method to 
produce self-similarity is by aggregating signals generated by a set 
of independent sources – intuitively, users – under the following 
conditions: users must switch between active and inactive periods 
– intuitively, sessions – and the duration of the "on" and "off" 
times must be from a heavy-tailed distribution. A distribution is 
called "heavy-tailed" if it has infinite variance; informally, this 
means that there is "significant" probability for seeing values that 
are extremely far from the mean. Therefore, it seems likely that 
basing the workload model on an aggregation of users, each 
exhibiting an on/off behavior (sessions), will result in a self-
similar model, as long as heavy-tailed distributions are used. 

Third, a user/session model provides a simple way to model 
time-dependent features, such as locality of sampling and cycles. 
Locality is very hard to model using a distribution on all jobs, 
since while the local variance is very small, the overall variance is 
very high. Users and sessions make it simple, by capturing that 
high variance and separating the intra-session low-variance model 
in a natural way. Cycles are also easy to model, due to a similar 
kind of separation of concerns: the inter-arrival time of jobs 
within a session (which doesn’t have cycles) is modeled 
separately from the inter-arrival time between session, which 
obeys the daily and week cycles. We have also included locality 
and the known cycles as features used to define user and session 
classes, to ensure that our model will capture the differences 
between sessions that happen at different times (day versus night 
sessions, for example). These features were found to be of major 
importance in defining session classes. 

Fourth, a user/session model captures flurries, as outlier 
sessions. Flurries showed immediately in our analysis as outliers, 
and a full model can be configured to either include them, as a 
special kind of session, or not at all. This gives researchers the 
choice, which is vital [19] since on one hand flurries are not 
characteristic of common workload, but on the other hand most 
long production traces contain at least one. 

Fifth, since algorithms that rely specifically on users exist, 
then modeling users is necessary – since a main use of models is 
to compare competing algorithms. We believe that this need will 
increase, as more new algorithms will rely on user history. 

And sixth, a user/session model is beneficial to 
understanding and exploiting workload features because it works: 
As the next sections will show, we succeeded in identifying the 
core variables that explain most of the variance between users and 
sessions, and then identified a small number of user and session 
classes that cover their entire spectrum. This proves the whole 
approach to be viable in practice. 

 

3. THE DATASET 
 

Our work is based on seven production logs from the Parallel 
Workloads Archive [16]. Hence, these logs have all been 
thoroughly checked and cleaned from many different kinds of 
noise, extreme outliers and errors - all very common problems 
with production logs.  The logs contain more than 700,000 jobs 
that span over 87 months, and come from four different locations 
and five architectures. 



Table 1: Parallel Computers in Our Data Set 

Machine # Nodes #Jobs Period 

SDSC Paragon 416 32,136 Dec 94 – Dec 95 

KTH IBM SP/2 100 28,490 Sep 96 - Aug 97 

CTC IBM SP/2 512 77,222 Jun 96 – May 97 

SDSC IBM SP/2 128 73,496 Apr 98 – Apr 00 

LANL CM-5 1024 122,055 Oct 94 – Sep 96 

LANL Origin 2000 2048 121,989 Nov 99 – Apr 00 

SDSC Blue Horizon 1152 250,440 Apr 00 – Jan 03 
 

To the best of our knowledge, this research is the most 
comprehensive to date on parallel workload modeling with respect 
to the number, size and quality of the logs used for the analysis. 
Moreover, today there are probably no other publicly available 
logs that can be used for such an analysis. While all seven logs 
come from typical high-performance computing centers, there are 
obvious differences caused by architectures, user population, and 
technical and administrative policies. In order to provide insights 
that are location- and architecture-neutral, which is our major 
goal, we analyzed all logs together. We extracted session and user 
statistics from each log, but then combined all sessions to a single 
list for the PCA and clustering analyses. All users were combined 
to a single list in the same manner. This ensures that log-specific 
features will disappear in the cumulative lists, and the main 
features left will be those that are universal to users of massive 
parallel computers. 
 

4. PRINCIPAL COMPONENTS OF  
 SESSIONS 

 

4.1. Sessions Defined 
 

A session is intuitively a period of continuous work of one 
user. This does not mean that jobs of that user are active 100% of 
the session’s time – a user may run a job to completion, think 
about the result, and run another job, all within the same session. 
The time between the completion of the previous job and the 
submission of the current job is called the think time of the 
current job. Intuitively, jobs are considered to be within a single 
session if there is a short think time between them. There is no 
other formal definition of a session, and no widely accepted think 
time that is considered as a session boundary [1]. In order to 
decide what the boundary should be, we checked the cumulative 
distribution of think times in the logs.  

 

Figure 1: CDF of Think Times 

The first observation from figure 1 is that the different logs 
are strikingly similar. This is the main reason that enabled us to 
analyze all logs together and draw meaningful conclusions. The 
second observation is that most work is indeed done in sessions: 
while some think times are very high (not within the same 
session) or way below zero (next job started before previous one 
was finished), most of the jobs have think times around zero – 
within the same session. 

Following figure 1, we defined the session boundary to be 
twenty minutes. This is inspired by the fact that for all logs, 
around that time the CDF stops its steep climb and returns to a 
steady rise – meaning that the number of jobs started after 25, 55 
or 85 minutes after their previous jobs is about the same. We took 
this as a cue that above this imaginary boundary the dominating 
distribution is that of session inter-arrivals, and not the intra-
session one. 

Twenty minutes is obviously not the only possible choice, 
but we are confident in it for two reasons. First, we’ve done a 
sensitivity analysis, by repeating the analyses using 15-minutes 
and 30-minutes boundary values, and received virtually the same 
results. Second, from a practical point of view, this choice works: 
Using this definition we received stable and consistent PCA and 
clustering results, which are useful for future modeling and 
algorithmic research. 

 

4.2. Variables Set 
 

The variables that we used in our analysis are divided to 
traditional ones, focused on the size of the incoming workload, 
and newer ones, measuring aspects of the workload’s temporal 
structure. The traditional variables are summarized in table 2. The 
median and interval were preferred over the average and standard 
deviation, which have been shown to be highly unstable in 
parallel workloads due to heavy tails [8]. 

      Table 2: Workload Variable Definitions 

Symbol Description 

J Number of Jobs 

D Duration 

Rm Median of Runtime 

Ri 90% Interval of Runtime 

Pm Median of Parallelism 

Pi 90% Interval of Parallelism 

Im Median of Inter-Arrival Time 

Ii Interval of Inter-Arrival Time 

Tm Median of Think Time 

Ti 90% Interval of Think Time 

 

There are three kinds of temporal structure aspects to 
represent: locality of sampling, daily cycle and weekly cycle. 
Locality of a session is represented by two simple variables: the 
number of unique job sizes (UP) of jobs in that session, and the 
number of unique runtimes (UR) of jobs in that session, where 
jobs are considered unique if there is a 5% difference. For most 
sessions these numbers are very small, which implies locality: 
they use only a fraction of the overall parallelism and runtime 
distributions. 



The daily cycle is represented by two variables: a binary 
variable which equals 1 if the session started during the day and 0 
otherwise (?D), and a continuous variable measuring the percent 
of the session that occurred during daytime (%D). The definition 
of daytime has been derived from the figure 2, which shows the 
distribution of job arrivals during the day (corrected for time zone 
shifts), for all logs. 

The results are surprisingly similar for all logs –probably 
because the daily cycle is a universal human trait, and not a 
technical one. Based on figure 2, we defined daytime to be 
between 7:30 and 17:30. 

The weekly cycle is represented by two similar variables: a 
binary variable that equals 1 if and only if the session started 
during a weekday (?W), and another one that measures the 
percentage of the session done during weekdays (%W). According 
to figure 3 (in which day number 1 is Sunday), we defined 
workdays to be Monday to Friday. 

 

Figure 2: Job Arrivals across Hours of the Day 

4.3. Principal Components Analysis 
 

Principal component analysis (PCA) is a statistical procedure 
that transforms a number of (possibly) correlated variables into a 
(smaller) number of uncorrelated variables called principal 

components. The first principal component accounts for as much 
of the variability in the data as possible, and each succeeding 
component accounts for as much of the remaining variability as 
possible. The objectives of PCA are to identify patterns in data of 
high dimensionality, and to discover or reduce its dimensionality. 

For a full presentation of PCA, see [11]; here we’ll provide a 
short summary. Given a matrix p of observations – for example, a 
row for each session – we normalize it, compute the covariance 
matrix, and calculate the eigenvectors and eigenvalues of the 
covariance matrix. We then sort the eigenvectors by decreasing 
eigenvalues – the ones with the highest eigenvalues are the 
principal components. The size of each eigenvalue is proportional 
to the percent of variability in the original data its corresponding 
eigenvector captures. 

The original data can be transformed to uncover principal 
variables by multiplying the sorted eigenvectors matrix (called a 
feature vector) by the transposed matrix of original data. The first 
columns of the resulting matrix will contain the principal 
component values of the data for each observation. 

 

Our input matrix for sessions has a row for each of the 
145,582 sessions (in all logs combined), and 16 columns, one for 
each variable defined in section 4.2. Our focus is on finding the 
dimensionality of the data – hopefully discovering that a select 
subset of our variables is enough to explain most of the variance 
between sessions in parallel workloads. 

 

 

Figure 3: Job Arrivals across Days of the Week 

 

A positive answer to this question would mean that the 
variables we chose indeed capture most of the variance between 
sessions. This is the most important point in using PCA – in 
contrast to some statistical techniques, the wrong variables won’t 
produce arbitrary results that can be misinterpreted. We have 
experienced this over a long period of time during this research – 
starting only with the 12 traditional workload variables from table 
2, many eigenvalues were near equal, and almost no 
dimensionality reduction was possible. The gradual addition of 
the temporal structure variables raised the percentage to their 
current level, in which the first 8 of 16 eigenvectors capture 85% 
of the variance. 

4.4. PCA of Sessions 
 

Table 3 describes the nine largest eigenvectors of the 
sessions’ PCA analysis; the last line contains the weight of each 
vector – its eigenvalue divided by the sum of all eigenvalues – and 
the cumulative weight. 

The next step is to interpret what each of the vectors means 
in terms of the original variables. To do so, the largest coefficients 
of each vector are highlighted. For example, the second vector 
gives most of its weight to the weekly cycle – the coefficients of 
the other variables in that vector are negligible in comparison. 
Analogically, the third vector is focused on locality, the fourth on 
the daily cycle, the fifth and seventh on parallelism, and the sixth 
on inter-arrival time. 

The first – most important vector – contains several variables 
of similar coefficients. The reason is that these variables are 
correlated: The (linear) correlation coefficients between Tm and 
Ti is -0.75 (!), between Ti and Ri is 0.41, between Ti and Ii is 
0.38, and between Ii and D is 0.42. Other pair-wise correlations of 
these variables are high as well, and match the findings in [18]. 

 



Table 3: Principal Eigenvectors of Sessions’ PCA 

 #1 #2 #3 #4 #5 #6 #7 #8 #9 

J -.09 .11 -.36 -.01 .40 .27 -.45 -.17 .17 

D -.34 -.02 .11 -.04 .03 .21 -.26 .00 -.71 

Rm -.26 -.09 .22 .06 .10 -.18 .01 -.69 -.25 

Ri -.34 .01 .00 -.05 .10 -.19 .35 -.42 .40 

Tm .39 .02 -.12 .07 -.18 .36 .16 -.37 -.06 

Ti -.44 .00 .07 -.09 .14 -.33 -.06 .33 .12 

Im -.28 -.02 .17 -.06 -.23 .56 .15 .03 .22 

Ii -.39 -.01 .16 -.08 -.16 .42 .12 .11 .12 

?D .08 .03 .05 -.70 .00 -.04 -.05 -.15 -.04 

%D .14 .05 .03 -.69 .00 .00 -.02 .01 .02 

UP -.17 .18 -.50 -.06 -.17 -.08 .30 .01 -.21 

UR -.17 .16 -.50 -.03 .27 .16 -.06 -.03 .08 

?W .04 .67 .21 .06 .05 -.01 .02 -.01 -.01 

%W .03 .67 .22 .06 .05 .00 .02 -.01 -.02 

Pm -.08 .06 .00 .05 -.56 -.13 -.66 -.19 .29 

Pi -.16 .16 -.36 -.04 -.52 -.19 .12 .01 -.17 

% 19 12 12 11 8 8 6 4 4 

C% 19 31 43 54 62 69 75 81 85 
 

The intuition behind these correlations is clear: Think time is 
computed by summing runtimes and inter-arrival times, and high 
runtimes or inter-arrival times imply higher session duration. As a 
result, these variables’ weights are correlated as well, as seen in 
the first vector. However, there is still a difference between the 
first vector, which is focused on duration, and the eighth vector, 
focused on runtimes (note how the duration and inter-arrival 
variables are negligible there). 

High linear correlations explain the pairing of variables in 
the other vectors as well: the correlation between ?W and %W is 
0.93, between ?D and %D is 0.74, between UP and UR is 0.45, 
between Pm and Pi is 0.24, and between Im and Ii is 0.61. PCA 
captures these correlations by placing correlated variables in the 
same vectors; this allows us to relate to the “feature” each vector 
represents, rather than perfecting the way each feature is 
measured, or making sure that it’s measured once (and that 
variables are uncorrelated). In contrast, this will be an issue in the 
clustering analysis in the next section, where highly correlated 
variables will be filtered out from the analysis. 

To verify the stability of the results in table 3, we repeated 
the analysis several times, slightly varying the variables set each 
time. The resulting vectors and the corresponding features they 
represent always stay the same; however, the order of the vector 
may change. For example, if only 1 out of 16 variables measures 
locality (for example, if UR is removed), then the locality vector 
would move from 3rd vector to 5th place, because the locality 
feature is now less evident in the dataset. However, the main 
features and the proportion of explained variance is about the 
same in all analyses. 

To conclude, we found that the following features explain 
most of the variance between sessions: 

• Interval of Inter-arrival / think times 
• Weekly cycle 
• Locality 
• Daily cycle 
• Parallelism 
• Inter-arrival time 

Arguably, these variables alone are not enough, since 
although they dominate certain eigenvectors, there are also non-
zero coefficients in each eigenvector, which are required to build 
it, and ignoring them spoils the results. However, this is more than 
compensated in the seven smallest eigenvectors (not shown in 
table 3), all of each are also dominated by the above variables. 

Note the high dominance of the temporal structure variables, 
which synthetic models to date have largely ignored. In contrast, 
the runtime seems to play a surprisingly minor role. 
 

5. CLUSTERS OF SESSIONS 
 

5.1. Methodology 
 

Identifying and characterizing a small number of consistent 
session clusters is of high practical importance to both algorithm 
design and workload modeling. We will use the classic K-means 
clustering algorithm [11], which in a nutshell works by iterating 
until convergence a two step process: compute estimated centers 
of clusters, and tag each observation to belong to the cluster to 
which it is closest. 

The algorithm requires the number of clusters as input, and 
finding the “right” number of clusters is highly problem-specific 
and sometimes subjective [11]. We have experienced with a large 
number of clustering results (a practice required anyway to verify 
the stability of our results), and concluded that using five clusters 
gives the most stable and useable results. 

Another methodological issue is the variables set by which 
the clustering is performed. In contrast to the PCA analysis in 
which we used all candidate variables, here it is desirable to 
remove highly correlated variables, so that each feature is 
represented once and the algorithm is not distorted to cluster by 
any one particular feature. The variables used for the clustering 
shown here are Duration, Think-time interval, Day time part, 
Work week part, Unique processors count, Parallelism median 
and Runtime median.  

5.2. The Five Session Classes 
 

Table 4 shows the mean, median and interval of each 
variable in each cluster. Figure 5 shows some of the full 
distributions of sessions, ordered and colored by cluster using the 
same colors of table 4 and figure 4. Analysis of the data confirms 
that the clusters correspond to intuitive session types: interactive 
versus batch work, day versus night, and weekday versus weekend. 
This enables giving each cluster a significant name. 

Interactive, workday, daytime sessions. This is the most 
common session class (43%). It occurs always in weekdays and 
starts during daytime in 95% of its sessions. Each session has very 
few jobs (median is 2.0 and mean 3.4), resulting in high locality. 
Runtimes and parallelism are low, typical for interactive work. 

Interactive, workday, nighttime sessions. These 29% of the 
sessions are active mostly during the night (82%) although only 
63% start at night. The number of jobs, inter-arrival times and 
think times are short and typical of interactive work; locality is 
high as well. On the other hand, runtimes are much higher 
(median of 33 minutes in contrast to 6 minutes in the daytime 
cluster). The most plausible explanation is that these sessions 
often represent someone who works interactively during the day, 
and towards the evening starts one or more long job that run 
during the night. 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Interactive, weekend sessions. The weekly cycle is the next 
important differentiator between sessions, according to these 
results. 98% of sessions in this cluster start during weekends. The 
statistics are typical of interactive work, and are mostly in 
between the values of the previous two weekday clusters.  

Batch, highly parallel sessions. The last two clusters 
obviously represent batch work, and are divided between 
parallelism and runtime. Both clusters are active near-equally at 
day vs. night and weekday vs. weekend – note that as we defined it 
daytime is 42% of each 24-hour day, and workdays are 71% of a 
week. This cluster has sessions with usually one job (median 1.0, 
mean 2.5), very high parallelism (median 64.0, meaning half the 
machine since it’s normalized across logs), and much higher 
runtimes than the interactive sessions. 

Batch, high duration sessions. These batch sessions have 
higher parallelism than the interactive sessions (5.29 median), and 
most evidently – a runtime median of 51.8 hours and mean of 
100.9 hours, hinting that the runtime distribution has a long tail. 
This is in sharp contrast to a median runtime of 5.75 hours in the 
other batch sessions cluster, and much less in the interactive ones. 
This session class has the most jobs (median 6.0, mean 22.4), but 
this may be caused in part by the way we defined sessions using 
think times. 

43%

29%

21%

4% 3%

Int. Weekday Daytime

Int. Weekday Night

Int. Weekend

Batch Highly Parallel

Batch High Duration

 
Figure 4: Distribution of Session Classes 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

6. PRINCIPAL COMPONENTS OF USERS 
 

6.1. Variables Set 

Our data has 2,048 users in all the logs combined. The 
traditional variables were kept, computed on all the jobs on each 
user: median and 90% interval of runtime, parallelism, inter-
arrival time and think time. The total number of jobs J and the 
total number of sessions S are used to quantify the user’s activity. 
To measure how continuous and intensive that activity was, a jobs 
per week (JW) variable was added; we also computed a sessions 
per week variable, but its linear correlation to JW was full (1.0), 
so it was dropped. Duration D in days was not used in the PCA 
analysis, but was measured and will be given in the table of clusters. 

Some of the temporal structure variables make no sense to 
measure at the user level – the UP, UR, ?D and ?W variables lose 
their meaning when jobs from different sessions are combined. 
The %D and %W variables over each user’s job were measured, 
as they describe the user’s habits outside a single session scope. 

The correct way to analyze users’ temporal behavior, 
including aspects such as locality, is to take advantage of our 
analysis of sessions. For each user, we add five more variables, 
each counting the proportion of each session type in that user’s 
sessions. This encapsulates many aspects of the user’s work 
patterns, and as the analysis will show, provides good results. The 
variable names correspond to the initials of the session classes’ 
names from section 5.2, and in the same order are %IWD, %IWN, 
%IW, %BHP and %BHD. Note that the proportion of session of 
each class is used and not the number of sessions, to decouple the 
amount of work (measured using the J and S variables) from the 
measurement of work patterns. 

The first nine eigenvectors of the PCA analysis of the above 
18 variables is given in table 5. The two think time variables (Tm, 
Ti) are absent, since they have a correlation of and 1.0 and 0.99 
with the Im and Ii variables and therefore have exact similar 
values. 

 Int. Workday Daytime Int. Workday Night Interactive Weekend Batch Highly Parallel Batch High Duration 

 Mean Med Int Mean Med Int Mean Med Int Mean Med Int Mean Med Int 

J 3.4 2.0 10.0 5.0 2.0 15.0 4.2 2.0 12.0 2.5 1.0 6.0 22.4 6.0 48.0 

D 5634 2626 28371 45445 16452 179584 19560 4186 93611 55788 20713 237677 363495 186533 1246071 

Rm 2418 383 12006 11322 2008 53114 5076 485 29682 8068 2774 34182 24304 10828 92299 

Ri 2265 9 12821 5583 18 37010 3723 14 24118 3786 0 19284 32825 18104 119838 

Tm -1123 0 6948 -6101 0 40581 -3311 0 21876 -5863 0 34675 -103705 -40434 396074 

Ti 4035 112 23819 13423 155 75626 8620 161 53907 13782 0 83244 259850 200832 750768 

Im 428 32 1966 1160 17 5751 701 28 2921 2086 0 10984 19722 420 102109 

Ii 1435 136 7529 6264 87 41378 3126 128 14006 7822 0 44333 90006 32286 344532 

?D 0.95 1.00 0.00 0.37 0.00 1.00 0.72 1.00 1.00 0.67 1.00 1.00 0.66 1.00 1.00 

%D 0.97 1.00 0.27 0.18 0.00 0.52 0.65 1.00 1.00 0.55 0.46 1.00 0.47 0.42 1.00 

UP 1.28 1.00 2.00 1.27 1.00 2.00 1.30 1.00 2.00 1.25 1.00 1.00 3.33 2.00 7.00 

UR 2.49 2.00 6.00 2.75 2.00 7.00 2.63 2.00 7.00 1.93 1.00 4.00 6.55 4.00 17.00 

?W 1.00 1.00 0.00 0.95 1.00 0.42 0.02 0.00 0.16 0.78 1.00 1.00 0.73 0.76 1.00 

%W 1.00 1.00 0.00 0.95 1.00 1.00 0.04 0.00 0.00 0.79 1.00 1.00 0.77 1.00 1.00 

Pm 4.99 3.56 15.94 5.54 2.56 21.27 4.32 1.78 15.94 61.76 64.00 60.62 9.59 6.00 31.38 

Pi 1.77 0.00 10.24 1.95 0.00 12.00 1.80 0.00 10.00 9.52 0.00 56.89 13.54 5.29 62.00 

Table 4: Characteristics of the Five Session Classes 



 

 

 

 

 

 

 

 

 

 

6.2. PCA of Users 
 

The first 9 out of 18 eigenvectors in the users’ PCA capture 
83% of the variable between users. However, the next five 
eigenvectors are a repetition of eigenvectors 5,6,2,3 and 4 
respectively – meaning they have the same dominant variables – 
so with the same set of variables used for the first eight 
eigenvectors, 96.7% of the variable is captured. 

As with sessions, each eigenvector represents a feature, and 
variables are grouped by correlation. These features explain most 
of the variance between users: 
• Daily Cycle 
• Parallelism 
• Runtime 
• Number of jobs / sessions 
• Weekly cycle 
• Inter-arrival time 
• Jobs per week 

 
 #1 #2 #3 #4 #5 #6 #7 #8 #9 

J -.01 .13 -.01 -.64 .06 -.26 .15 -.06 .04
S .04 .19 .00 -.62 .05 -.23 .03 .20 .01

Rm -.24 .07 -.44 .12 .30 -.07 .06 .36 -.16 
Ri -.20 .16 -.50 .07 .22 .00 .07 .22 -.01 

Pm -.08 .51 .18 .16 -.04 .00 .02 .13 -.07

Pi .01 .50 .13 .03 -.07 .05 -.05 -.17 .05
Im .01 .01 -.08 .19 -.25 -.63 .21 -.04 -.12

Ii .09 -.02 -.13 .25 -.26 -.54 .06 -.09 .25
%D .49 .11 -.28 .08 .10 .06 .12 .18 -.03

%W .07 -.02 .20 .08 .47 -.32 -.32 -.22 -.66
%IWD  .57 -.05 .08 .05 .25 -.02 .13 .10 .13 
%IWN -.53 -.19 .18 .01 .10 -.13 -.10 .13 .19
%WD .01 -.05 -.35 -.17 -.59 .17 -.16 -.08 -.51
%BHP  -.04 .54 .21 .15 -.14 .02 -.03 .20 -.07
%BHD -.14 .23 -.30 .01 .23 .09 .26 -.75 .11 

JW -.12 -.13 .26 .03 -.02 .12 .83 .08 -.36 

% 16 15 11 10 8 7 6 5 5 
C% 16 30 41 51 60 67 73 78 83 

Table 5: Principal Eigenvectors of Users’ PCA 

 

7. CLUSTERS OF USERS 
 

Users were clustered with the same methodology used for 
session clustering. The variables selected to perform the clustering 
are Day time part, Parallelism median, Runtime median, Number 
of jobs, Work week part, Inter-arrival time median, Jobs per week, 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
  
 

and the proportion of batch high-duration sessions. These 
variables include the dominant coefficients in all eigenvectors of 
the users’ PCA analysis. The best results were obtained with four 
clusters, and as with sessions, it is possible to assign meaningful 
names to each user class, corresponding to intuitive user types. 

Long-term, Light users. 55% of users belong to this class, 
whose members have 26 sessions over a period of 125 days. 
These are the medians – the means are much higher, indicating a 
long tail of the respective distribution. According to the 
proportions of session classes for these users, their focus on 
interactive work is higher than the overall average – this class 
seems to represent people whose day job involves use of the 
parallel computer. The runtimes, parallelism, inter-arrival times 
and number of jobs per week are all in accord with a mainly 
interactive style of work. 

Long-Term, Heavy users. These 20% of the users are the 
source of most of the load on the computer. 
6% of their sessions are BHP and 13% of their sessions are BHR, 
in contrast to 1-2% in all other user classes. These users produce 
most of the sessions of these two batch classes. These users are 
also the heaviest users of the machine in terms of number of jobs, 
sessions and duration, by a significant margin. They work both 
day and night, workday and weekends in equal proportions. Their 
runtime, parallelism and inter-arrival statistics are high, a mix of 
their interactive and batch sessions. 

Short-term, Weekend users. The last two user classes 
represent users who worked on the computer for a short period – a 
median of 4 sessions, with median durations of 12 and 7 weeks, 
and a small total number of jobs (8 and 10, although the means 
are much higher). These seem to be users who received access to 
the computer for one computationally demanding project. The two 
user classes differ by their temporal work patterns, as measured by 
%D, %W and the session classes’ proportions. The third 
“weekend” cluster, consisting 10% of the user population, has 
78% of jobs starting on weekends, and the proportions between 
the three interactive session classes are much closer than in the 
overall distribution of session classes. 

Short-term, Workday users. 15% of the users belong to this 
fourth cluster, composed of short-term users with two strong 
habits: they prefer workdays over weekends (90% of jobs ran in 
workdays), and they prefer the night over day time (82% of jobs 
ran during the night). This is reflected by the fact that 65% of 
their sessions are interactive workday night sessions. 

Both short-term user classes consist mostly of interactive 

work, reflected by low runtime and parallelism statistics, and very 

intensive work, reflected by a very high number of jobs per week. 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Figure 6 contains several graphs that visualize the difference 
between the user clusters. Figure 7 below summarizes the 
distribution of user classes. 

55%

20%

10%

15%

Long-Term Light User

Long-Term Heavy User

Short-Term Weekend User

Short-Term Workday User

 

Figure 7: Distribution of User Classes 

Since we have conducted all our analyses on the combined 
workload of seven logs, it is necessary to remap the clusters – of 
both users and sessions – to the original logs, to verify that we 
haven’t clustered according to the logs. The full data is not given 
here due to lack of space, but the bottom-line results are that the 
session and user classes that we identified exist clearly in all logs, 
and are indeed unrelated to particular locations or architectures. 

 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 

7. Using These Results 
 

The above sections complete our search to find what is worth 
learning from historic parallel workloads, and to present that 
information in a simple and applicable way. There are two direct 
ways to use the results. 

The first is workload modeling. The PCA analysis answers a 
basic methodological question – what needs to be modeled? The 
temporal structure variables in particular have been shown to be 
of great importance, while some other variables have not. The 
PCA analysis was also a precondition to a meaningful clustering, 
since it ensures us that we are clustering according to a suitable 
set of variables – which wasn’t known before. 

We have also argued for the construction of a user-based 
model, because it’s required by recent algorithms, which make 
explicit use of the user field of each job, and because it’s a simple 
way to model several newly discovered unmodeled features – 
some of which we found to be of vital importance. 

In addition, we provided a very specific blueprint for 
constructing such a model: the set of variables, the user classes 
and their distributions, and the session classes and their 
distribution. To complete the model, full distribution fitting of 
each modeled variable in each user and session class is required, 
as well as a distribution for the inter-arrival times of new users  

 
 
 
 
 
 
 
 
 

 Long-Term Light User Long-Term Heavy User Short-Term Weekend User Short-Term Workday User 

 Mean Med Int Mean Med Int Mean Med Int Mean Med Int 

J 259 68 1252 526 171 1529 48 8 242 170 10 683 

S 70 26 281 82 50 223 12 4 47 26 4 117 

Rm 2,569  241  13,092  12,292  4,668  48,951  1,653  91  9,679  1,984  107  10,822  

Ri  11,853  5,269      43,228  54,460  56,064  117,519  7,609  821  43,205  3,750  256  23,333  

Pm 3.22 1.78 14.94 8.45 3.56 31.75 2.98 1.00 10.18 3.20 1.25 10.18 

Pi 11.06 3.75 60.00 18.31 8.98 64.00 5.40 0.19 30.00 5.30 0.00 28.00 

Im 33,349  390  71,072  -7,063  6  125,444  50,996  147  29,381  21,784  0 21,522  

Ii 1,135,229 261,020  5,025,950 776,389  396,090  2,684,896  1,058,137  119,341  4,899,134  471,280  34,469  2,499,302  

Tm 39,299  1,419  88,965  31,567  2,659  133,638  56,819  548  69,745  24,742  204  38,180  

Ti 1,134,561  256,335  5,023,631  693,984  283,564  2,340,145  1,060,989  106,129  4,899,777  471,995  28,530  2,497,021  

%D 0.82 0.86 0.47 0.66 0.67 0.61 0.60 0.67 1.00 0.18 0.18 0.48 

%W 0.80 0.78 0.46 0.72 0.72 0.42 0.22 0.25 0.50 0.90 1.00 0.33 

%IWD  55% 51% 83% 24% 23% 48% 36% 30% 100% 17% 10% 50% 

%IWN  22% 20% 53% 38% 38% 69% 36% 25% 100% 65% 60% 100% 

%WD 20% 20% 44% 19% 19% 38% 25% 10% 100% 17% 3% 67% 

%BHP  2% 0% 11% 6% 0% 47% 2% 0% 3% 1% 0% 2% 

%BHD  1% 0% 7% 13% 8% 43% 1% 0% 7% 1% 0% 4% 

JW 126.30 6.03 502.65 25.13 4.86 47.57 1139.86 10.51 6951.26 1247.26 20.48 7114.54 

D (days) 239 125 789 323 260 848 97 12 583 110 7 636 

Table 6: Characteristics of the Four User Classes 



and new sessions. Building such a model and validating that it 
represents the unmodeled features we listed well is a desirable 
future research direction from this work. 

The second use of this work is algorithm design. Consider 
for example an algorithm that relies on good runtime prediction, 
such as a backfilling scheduler [20], a grid management system 
[13] or a soft real-time task mapping service [6]. While relying on 
the user’s history to make predictions is common practice, relying 
on sessions is not, and is enabled now. 

When a job arrives, it needs to be attached to a session, made 
simple using the same-user, 20-minute think time rule. If the job 
is starting a new session, then its class must be determined, which 
is also easy: if it exceeds a certain requested runtime or 
parallelism – half the machine’s maximum, for example – the 
session is tagged as BHD or BHP respectively. Otherwise, the 
session type is determined solely by the day of the week and the 
time of the day. 

Once the session class is determined, we know its 
distribution of runtimes. This distribution is far narrower – and 
thus contains more informative – than what can be known a-priori 
by other means. Three layers of narrowing are at work here: the 
user level, the session level, and the session class level. 

If a given job is not the first within its session, then locality 
enables us to predict its runtime with great accuracy, based on the 
past jobs of that session. For example, In the IWD session class – 
to which 43% of sessions belong – the mean unique number of 
runtimes is just 1.28. Sessions, as we defined them, are a natural 
way to capture and exploit locality, especially since determining a 
session’s class is so easy. Using only the user, or the last hour or 
day, is open to much more noise and thus to inferior results. 

This is not to say that a prediction algorithm is not necessary. 
But given the a-priori knowledge embodied in this work, there is 
much less left to learn. We believe this should lead to reassessing 
existing predictors, and in particular to the preference of simple 
“knowledge-packed” algorithms overly highly sophisticated AI 
techniques [13,23] that assume little in advance. This is a primary 
future research direction of this work. 

Similar to runtime prediction is the problem of load 
prediction, found in load balancing [23], grid or multi-cluster 
scheduling [13] and soft real-time or general QoS enabled systems 
[6]. Here we must predict both runtime and parallelism, and 
sometimes the number of jobs as well. Again, our tables provide 
very close estimates, coupled with a clear-cut way to define a 
session and classify it. 

Many other problems require workload prediction. 
Regardless of the problem and of whether the algorithm that tries 
to solve it is predictive, adaptive, dynamic, learning or plain 
heuristic – this work provides a lot of sound prior knowledge on 
parallel workloads it can easily use. Due to the large size of our 
data, the architecture-neutrality of the analysis, and the stability of 
the results, we believe that they can be highly useful for a large 
variety of applications. 
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