
The Perceived Value of Authoring and Automating Acceptance Tests Using a

Model Driven Development Toolset

David Talby

Hebrew University of Jerusalem

davidt@cs.huji.ac.il

Abstract

One approach to applying keyword driven testing in

a model-driven development environment is by defining

a domain specific language for test cases. The toolset

then provides test editors, versioning, validation,

reporting and hyperlinks across models – in addition

to enabling automated test execution. This case study

evaluates the effectiveness of such a solution as

perceived by two teams of professional testers, who

used it to test several products over a two year period.

The results suggest that in addition to the expected

benefits of automation, the solution reduces the time

and effort required to write tests, maintain tests and

plan the test authoring and execution efforts – at the

expense of requiring longer training and a higher bar

for recruiting testers.

1. Introduction

Keyword driven testing, also known as action word

testing, dictates a planning stage before starting to write

test cases, in which a set of abstract keywords about the

application under test is identified [5]. Figure 1

illustrates a test case for a form-based application –

“Edit Field” is an example of a keyword, a.k.a. action

word. Once the keywords are defined, test cases can be

written by non-programmers, and a driver to

automatically execute tests can be developed. This

approach rewards the initial planning effort by making

tests more readable, reusable and easier to maintain,

compared to script-based automated testing [1].

Defining the action words, their parameters and

semantics for a given application domain is essentially

defining a domain specific language (DSL) for test

cases. DSL‟s are a popular approach to model-driven

software development (MDSD), in which a planning

stage defines an explicit meta-model, or language, for

each aspect for an application domain – data entities,

transactions, integrations, rules, forms and so on [7].

Tools enable developers to work with models as first-

class artifacts, and to automatically transform them into

executable code or configuration.

As DSL tools such as [2,6] mature, there are

potential advantages to using them to implement

keyword driven testing instead of specialized test tools

like [3,4]. Both types of tools enable the definition of

action words for a given domain, and then generate a

UI to edit test cases, support versioning, custom

validation, reporting and integration with the build

process. However, since a DSL tool can be used to edit

multiple models in a given application – with test cases

being just one kind of model – it can provide unique

features which are not otherwise possible.

This industry case study presents testers‟ evaluation

of such a solution and the benefits it delivers.

2. Background

The toolset this paper evaluates is described in detail

in [9]. It had four unique features taking advantages of

its generic and integrated meta-modeling environment.

The first is auto-completion while editing tests.

Since all the data entities and their fields, actions and

forms are modeled using the same toolset and metadata

repository [8], then the first parameter is each of the

rows in Figure 1 can be filled from a combo box, with

auto-completion, based on the context. This speeds up

test authoring and prevents the common case of test

failures due to spelling mistakes. In addition, each

reference to another model is a hyperlink, making it

easier for a tester to navigate and learn models.

Step Type 1
st
 Parameter 2

nd
 Parameter

Open Form Account

Edit Field Customer John Doe

Check Field Amount 0.0

Edit Field Amount 1000.00

Check Action Withdraw Enabled

Figure 1: Keyword Driven Test Case Example

The second feature is validation. Before they are

checked in, test cases can be validated against the

current baseline of the other (non-test) models, to make

sure they don‟t reference models that do not exist.

The third feature is impact analysis. In the case

study organization, a new baseline of detailed

specifications would be delivered every other month,

which caused testers – before this solution was

implemented – to spend up to a quarter of their time

figuring out which test cases must be created or

updated. The integrated metadata repository enabled

quick, automated answers to questions such as “show

all test cases which refer to field X of entity Y” or

“show all changes in entity Z between the current and

the previous baseline”.

The fourth feature is detailed coverage reports.

Once test cases have formal, validated hyperlinks to

every other model they use, it becomes easy to ask

detailed coverage questions: Show all actions which are

never executed in any test, or show all UI fields which

have an „Is Enabled‟ logic specified but no test which

checks whether this field is enabled. Beyond metrics

for management, such reports also provide direct

guidance to testers on what needs to be improved.

All of the above are potential benefits – this case

study presents how the testers who actually used this

solution in a real-world setting evaluated it after

extended use. Since the organization under research

was an early adopter in applying this approach for a

suite of large-scale enterprise applications, to the best

of our knowledge this dataset is unique at this time.

The next section describes the methodology for

gathering the research data, and the following sections

present and analyze the results.

As a clarifying note – this case study is not about

model based testing [10], which focuses on automatically

generating test cases from models. It‟s about applying

“traditional” MDSD to empower human testers.

3. Methodology

Data was collected in two ways. The first is a set of

questionnaires filled by nine professional testers who

used the toolset extensively on a daily basis. The nine

testers had an average experience of fifteen months of

using the toolset; six months of hands-on experience

was the minimum for a tester to be included in this case

study. Six testers had previous experience with other

testing tools. All nine testers worked in the same

organization, using the same methodology over the

same two year period, so different responses should not

be attributed to organizational factors.

The questionnaires were anonymous, and contained

a mix of open and closed questions. Aggregated results

for some of the closed questions are presented in the

following sections, and in all cases include all nine

responses. Areas in which similar questions were

answered inconsistently, as well as questions whose

answers included extreme outliers, are excluded from

the discussion below. Therefore the results presented

focus on the significant and consistent findings –

although this sample size is too small for rigorous

statistical analysis of significance.

The second form of data collection for this case

study was in-depth interviews – in particular with the

two test team leads, who were responsible for planning,

tracking, training and overall effectiveness of the test

effort, in addition to writing and executing tests.

Together with the open questions on the questionnaire,

these interviews enable interpretation and validation of

the quantitative results.

4. Authoring Tests

Table 1 summarizes results for two key questions on

the time required to write and maintain tests using the

model-driven toolset. This is individual work so time

represents effort as well. The numbers are the average

responses – i.e. “10% longer”, “10% shorter” and

“15% longer” would average to “5% longer”.

The first result is surprising – writing formal tests is

usually labor intensive, due to the need to conform to

machine-readable syntax and specify details that are

often – for better or worse – implied by free-form text.

Consider for example Figure 1 versus this text:

“Open a new account for „John Doe‟, change the amount

from 0 to 1000 and verify that „Withdraw‟ is enabled”.

The interviews and open questions explain the fact

that test writing in this toolset takes less time than

writing free text by the effectiveness of auto-completion

in the editor. This is verified by another closed question

whose result stated that test writing time with auto-

completion is 40% shorter (averaged) than test writing

time without it. Step names, field names, actions and

Compared to writing free-form test cases for

manual testing, how long does it take to …

Write a test case?

12% shorter

Update test cases when specs change?

40% shorter

Table 1: Writing and maintaining test cases

Compared to executing manual tests,

how long does it take to …

Execute a single test?

48% shorter

Execute the entire test suite?

67% shorter

Reproduce an application bug?

49% shorter

Decide if a failed test is a new or existing issue?

30% shorter

Table 2: Executing tests

choices (such as enabled/disabled) are selected from

combo boxes or via auto-completion – so after several

weeks on the job a tester could write a test step in just a

few keystrokes. In addition, testers do not have to

memorize or look up exact names.

The time and effort to maintain tests as specifications

change is another big win, perceived on average to be

40%. This is attributed to the ability to compare models

to their previous versions – immediately see what

changed – and then find all the test cases that refer to

changed, renamed or deleted specs. This replaces the

tedious work of manually going through all test cases

to find these occurrences, which also heavily relied on

the experience of the specific tester doing that work.

5. Executing Tests

Table 2 summarizes the main results on test execution.

This does not entail just clicking the „run‟ button and

watching an automated test run, but the entire process

of testing a new version of the application:

 Setting up an execution environment

 Running the automated tests

 Analyzing each failed test

 Fixing the tests where necessary and re-running

 Interacting with developers and other testers to

find if failures are new or existing defects

 Describing defects well in the bug tracking tool

Having an automated solution is perceived to

eliminate roughly half the time it take to execute a

single test, and two thirds of the time required to

execute the full suite. The interviews suggest that this is

largely attributed to test automation, meaning that these

improvements are not specific to an MDSD based

solution, and are comparable to what other capable test

automation toolsets would provide.

Compared to an environment in which tests are

written and executed manually, evaluate the …

Ease of estimating the time required to write tests

8 of 9: Easier

Ease of estimating the time required to execute tests

7 of 9: Easier

Required professional level of a tester

7 of 9: Higher

Time required to train a new tester

12% longer

Table 3: Managing the testing effort

This reasoning also applies to the reduction in the

time it takes to reproduce a bug – although on that

subject the interview feedback stressed the importance

of interactive, step-by-step test execution from the model

editor, rather than the ability to run tests in batches.

6. Managing the Testing Effort

Table 3 summarizes results on planning, estimation,

recruiting and training. For the first three questions

only a generic comparison was requested (more/less),

because only two of the nine subjects were experienced

team leads who performed these tasks regularly.

Training was delegated across the team and most

people had some experience training others, in addition

to how they were personally trained.

A majority of people stated that it was easier to

estimate the time required to both write and run tests

using the MDSD based solution. In interviews, both

team leads strongly agreed that this was true, resulting

in a much more predictable test team. Two explanations

were given for this benefit.

The first is that in a model-driven environment, the

detailed specifications – against which tests are written

– are formal and validated, enabling a better estimate

of their complexity in advance. For example, if a new

version of the specifications added or changed 11

transactions, 38 fields in 7 entities and 15 UI actions –

the test team leads could rely on these numbers to

estimate how long it would take to test them. Over time

they developed metrics as specific as averaging how

many minutes it takes to test a single field in the UI.

This was widely perceived as being easier and more

accurate than trying to estimate the complexity hidden

in a 20-page free-text functional spec.

The second explanation for easier planning is that

the formal test cases are clearer than free-form tests,

enabling more flexibility in assigning test execution to

different people without losing predictability. Consider

for example the test case in Figure 1 – it can be

executed as quickly by someone who was hired just

four weeks ago and by the domain expert on opening

accounts who has two years of experience. This is often

not the case with free-text test cases, which often

assume both domain and application knowledge

(Which dialog box is used to change the account type?

Which types of users are authorized to do so?).

One of the benefits of keyword driven testing is that

the number of steps per hour that a tester can execute

can be measured and remains predictable over time.

There‟s also more flexibility in planning – anyone can

execute (or maintain) any part of the test suite, at

roughly the same speed and quality.

The last two questions in Table 3 suggest that a

drawback of the solution studied here is that it is more

complex than a manual testing environment. While the

perception that it requires more talented testers may be

the result of the testers testifying on their own skills,

this would not affect the perceived training time. The

interviews confirmed that training takes longer in this

environment, although new testers were still expected

to become fully productive within a few weeks.

Experienced testers and the test team leads did not

consider this to be a major problem, since extra

training is required to use any automated testing tool.

The MDSD based solution was perceived as adding a

relatively small overhead in this respect, similar to

other keyword driven testing tools, and better than

script-based tools which required programming and

familiarity with tool-specific APIs.

7. Overall Value and Summary

Table 4 summarizes the perceived bottom-line value

of the solution. Cutting time to market by two thirds

compared to a manual testing environment is the primary

perceived benefit. The open questions explain it as the

cumulative result of the highly efficient tools and

processes to maintain the test suites, execute tests, and

work with developers to reproduce defects. The team

leads added predictability and flexibility in task

assignments as another factor.

The perceived reduction in the number of defects

that go undetected was explained simply by the more

effective use of the testers‟ time: Since testing is always

both time- and resource-constrained, substantial gains

in tester productivity result in a higher quality product.

These results indicate that the professionals using

this solution on a daily basis value it as highly effective

and as a step forward from traditional test automation

Compared to an environment in which tests are

written and executed manually, what is the …

Time from a code complete to a delivered product?

63% shorter

Number of defects that go undetected?

34% smaller

Table 4: Overall value

tools – which as detailed in [9] this solution replaced.

In particular, modeling test cases inside an integrated

DSL environment and metadata repository enables

several benefits that were not available before.

This case study covers two teams of experienced

testers working for two years on several real-world,

enterprise-critical applications. Since they were early

adopters of this approach, this is an early and limited

data set – future work is required to expand it to more

organizations, projects and people, as well as to

validate perceived benefits against measured results.

8. References

[1] Buwalda H., Janssen D., Pinkster I. and Watters P.,

Integrated Test Design and Automation: Using the

Testframe Method, Addison-Wesley 2001.

[2] Cook S., Jones G., Kent S. and Wills A. C., Domain-

Specific Development with Visual Studio DSL Tools,

Addison-Wesley 2007.

[3] FIT Acceptance Testing Framework, http://fit.c2.com

[4] IBM Rational Functional Tester Plus,

http://www-01.ibm.com/software/awdtools/tester/

functional/plus/index.html

[5] LogiGear, Action Based Testing,

http://www.logigear.com/test_automation/

action-based-testing.asp

[6] MetaCase, http://www.metacase.com/

[7] Stahl T. and Voelter M., Model-Driven Software

Development: Technology, Engineering, Management,

Wiley 2006.

[8] Talby D., Adler D., Kedem Y., Nakar O., Danon N.

and Keren A., "The Design and Implementation of a

Metadata Repository". In Proc. of Intl. Council on

Systems Engineering Israeli chapter conf., March 2002.

[9] Talby D., Nakar O., Shmueli N., Margolin E. and

Keren A., "A Process-Complete Automatic Acceptance

Testing Framework". In Proc. of 2005 IEEE Intl.

Conference on Software - Science, Technology and

Engineering (SwSTE '05), February 2005.

[10] Utting M. and Legeard B., Practical Model-Based

Testing: A Tools Approach, Morgan Kaufmann 2006.

